<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
本文對經典手寫數位資料集進行多分類,損失函數採用交叉熵,啟用函數採用ReLU
,優化器採用帶有動量的mini-batchSGD
演演算法。
所有程式碼如下:
import torch from torchvision import transforms,datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim
batch_size = 64 transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,),(0.3081,)) ]) # 訓練集 train_dataset = datasets.MNIST(root='G:/datasets/mnist',train=True,download=False,transform=transform) train_loader = DataLoader(train_dataset,shuffle=True,batch_size=batch_size) # 測試集 test_dataset = datasets.MNIST(root='G:/datasets/mnist',train=False,download=False,transform=transform) test_loader = DataLoader(test_dataset,shuffle=False,batch_size=batch_size)
class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.l1 = torch.nn.Linear(784, 512) self.l2 = torch.nn.Linear(512, 256) self.l3 = torch.nn.Linear(256, 128) self.l4 = torch.nn.Linear(128, 64) self.l5 = torch.nn.Linear(64, 10) def forward(self, x): x = x.view(-1, 784) x = F.relu(self.l1(x)) x = F.relu(self.l2(x)) x = F.relu(self.l3(x)) x = F.relu(self.l4(x)) return self.l5(x) model = Net() # 模型載入到GPU上 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device)
criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
def train(epoch): running_loss = 0.0 for batch_idx, data in enumerate(train_loader, 0): inputs, target = data optimizer.zero_grad() # forward+backward+update outputs = model(inputs.to(device)) loss = criterion(outputs, target.to(device)) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299: print('[%d,%d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300)) running_loss = 0.0 def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: images, labels = data outputs = model(images.to(device)) _, predicted = torch.max(outputs.data, dim=1) total += labels.size(0) correct += (predicted.cpu() == labels).sum().item() print('Accuracy on test set: %d %%' % (100 * correct / total)) for epoch in range(10): train(epoch) test()
執行結果如下:
[1,300] loss: 2.166
[1,600] loss: 0.797
[1,900] loss: 0.405
Accuracy on test set: 90 %
[2,300] loss: 0.303
[2,600] loss: 0.252
[2,900] loss: 0.218
Accuracy on test set: 94 %
[3,300] loss: 0.178
[3,600] loss: 0.168
[3,900] loss: 0.142
Accuracy on test set: 95 %
[4,300] loss: 0.129
[4,600] loss: 0.119
[4,900] loss: 0.110
Accuracy on test set: 96 %
[5,300] loss: 0.094
[5,600] loss: 0.092
[5,900] loss: 0.091
Accuracy on test set: 96 %
[6,300] loss: 0.077
[6,600] loss: 0.070
[6,900] loss: 0.075
Accuracy on test set: 97 %
[7,300] loss: 0.061
[7,600] loss: 0.058
[7,900] loss: 0.058
Accuracy on test set: 97 %
[8,300] loss: 0.043
[8,600] loss: 0.051
[8,900] loss: 0.050
Accuracy on test set: 97 %
[9,300] loss: 0.041
[9,600] loss: 0.038
[9,900] loss: 0.043
Accuracy on test set: 97 %
[10,300] loss: 0.030
[10,600] loss: 0.032
[10,900] loss: 0.033
Accuracy on test set: 97 %
到此這篇關於PyTorch手寫數位資料集進行多分類的文章就介紹到這了,更多相關python多分類內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45