首頁 > 軟體

PyTorch載入資料集梯度下降優化

2022-03-09 10:00:03

一、實現過程

1、準備資料

PyTorch實現多維度特徵輸入的邏輯迴歸的方法不同的是:本文使用DataLoader方法,並繼承DataSet抽象類,可實現對資料集進行mini_batch梯度下降優化。

程式碼如下:

import torch
import numpy as np
from torch.utils.data import Dataset,DataLoader

class DiabetesDataSet(Dataset):
    def __init__(self, filepath):
        xy = np.loadtxt(filepath,delimiter=',',dtype=np.float32)
        self.len = xy.shape[0]
        self.x_data = torch.from_numpy(xy[:,:-1])
        self.y_data = torch.from_numpy(xy[:,[-1]])
        
    def __getitem__(self, index):
        return self.x_data[index],self.y_data[index]
    
    def __len__(self):
        return self.len

dataset = DiabetesDataSet('G:/datasets/diabetes/diabetes.csv')
train_loader = DataLoader(dataset=dataset,batch_size=32,shuffle=True,num_workers=0)

2、設計模型

class Model(torch.nn.Module):
    def __init__(self):
        super(Model,self).__init__()
        self.linear1 = torch.nn.Linear(8,6)
        self.linear2 = torch.nn.Linear(6,4)
        self.linear3 = torch.nn.Linear(4,1)
        self.activate = torch.nn.Sigmoid()
    
    def forward(self, x):
        x = self.activate(self.linear1(x))
        x = self.activate(self.linear2(x))
        x = self.activate(self.linear3(x))
        return x
model = Model()

3、構造損失函數和優化器

criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(),lr=0.1)

4、訓練過程

每次拿出mini_batch個樣本進行訓練,程式碼如下:

epoch_list = []
loss_list = []
for epoch in range(100):
    count = 0
    loss1 = 0
    for i, data in enumerate(train_loader,0):
        # 1.Prepare data
        inputs, labels = data
        # 2.Forward
        y_pred = model(inputs)
        loss = criterion(y_pred,labels)
        print(epoch,i,loss.item())
        count += 1
        loss1 += loss.item()
        # 3.Backward
        optimizer.zero_grad()
        loss.backward()
        # 4.Update
        optimizer.step()
        
    epoch_list.append(epoch)
    loss_list.append(loss1/count)

5、結果展示

plt.plot(epoch_list,loss_list,'b')
plt.xlabel('epoch')
plt.ylabel('loss')
plt.grid()
plt.show()

二、參考文獻

  • [1] https://www.bilibili.com/video/BV1Y7411d7Ys?p=8

 到此這篇關於PyTorch載入資料集梯度下降優化的文章就介紹到這了,更多相關PyTorch載入資料集內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com