<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
進位制也就是進位制位,常用的進位制包括:二進位制、八進位制、十進位制與十六進位制,它們之間區別在於數運算時是逢幾進一位。比如二進位制是逢2進一位,十進位制也就是我們常用的0-9是逢10進一位。
資料: 在計算機中,各種資訊都是以資料的形式出現的。資料經過處理後產生的結果為資訊,資料是計算機中資訊的載體,資料本身沒有意義。
單位:位(bit)是計算機中最小的資料單位;位元組(byte)是計算機中資訊組織和儲存的基本單位,也是電腦架構的基單位;1byte=8bit。
儲存單位:B(位元組)、KB(千位元組)、MB(兆位元組)、GB(吉位元組)或TB(太位元組)。以上是常用的換算單位,不常用的比TB更大的單位還有PB、EB、ZB、YB等。換算關係如下:
1 G = 2 10 ( 各 進 制 間 換 算 單 位 ) = 1024 M B 1G=2^{10} (各進位制間換算單位)=1024 MB 1G=210(各進位制間換算單位)=1024MB
1 YB = 1024 ZB 1 ZB = 1024 EB
1 EB = 1024 PB 1 PB = 1024 TB
1 TB = 1024 GB 1 GB = 1024 MB
1 MB = 1024 KB 1 KB = 1024 B(byte)
1 G = 2 10 M B = 2 20 K B = 2 30 B 1G=2^{10 }MB=2^{20}KB=2^{30} B 1G=210MB=220KB=230B
字長:計算機一次能夠並行處理的二進位制程式碼的位數。字長是衡量計算機效能的一個重要指標,字長越長,資料包含的位數越多,計算機的資料處理速度越快。計算機的字長通常是位元組的整數倍,如8位元、16位元、32位元、64位元和128位元等。
數制:用一組固定的符號和統一的規則來表示數值的方法。其中,按照進位方式計數的數制稱為進位計數制。如二進位制逢二進一,十進位制逢十進一,以此類推。
數碼:一個數制中表示基本數值大小的不同數位符號。十進位制有10個數碼(0,1,2,3,4,5,6,7,8,9)
基數:一個數值所使用數碼的個數。二進位制的基數為2,十進位制為10。
位權:一個數值中某一位置上的數碼所表示數值的大小。如:一個十進位制數345,3的位權為 1 0 2 10^{2} 102,4的位權為 1 0 1 10^{1} 101, 5的位權為 1 0 0 10^{0} 100; 若是二進位制數110,從右到左,0的位權則是 2 0 2^{0} 20,1的位權是 2 1 2^{1} 21,1的位權是 2 2 2^{2} 22,以此類推。
數位:指一個數中每一個數位所佔的位置。如520.789,這個數,5表示百位、2表示十位、0表示個位、7表示十分位、8表示百分位、9表示千分位。
位數:一個自然數數位的個數,例如數位9,它只含一個數位,所以9就是一位數;五位數12345則含有個、十、百、干與萬5個數位。
表示方式: 在計算機中,為了區分不同進位制的數,可以用括號加數制基數xi下標的方式來表示不同數制的數。例如,(492)10 表示十進位制數,(1001.1)2 表示二進位制數,(4A9E)16表示十六進位制數;也可以用帶有字母的形式分別表示為(492)D、(1001.1)B和(4A9E)H。D表示十進位制(Decimal),H表示十六進位制(hexadecimal),B表示二進位制(binary),O表示八進位制(Octet)在程式設計中,為了區分不同進位制數,常在數位後直接加英文學母后級來區別,如492D、1001.1B等。
二進位制:用1、0,共2位數表示
八進位制:用0、1、2、3、4、5、6、7,共8位元數表示
十進位制:用0、1、2、3、4、5、6、7、8、9,共10位數表示
十六進位制:用0、1、2、3、4、5、6、7、8、9、A=10、B=11、C=12、D=13、E=14、F=15,共16位元數表示
十六進位制(簡寫為 hex 或下標 16)是一種基數為 16 的計數系統,是一種逢 16 進 1 的進位制。通常用數位 0、1、2、3、4、5、6、7、8、9 和字母 A、B、C、D、E、F(a、b、c、d、e、f)表示,其中: A~F 表示 10~15,這些稱作十六進位制數位。
十進位制數是組成以10為基礎的數位系統,有 0,1,2,3, 4, 5, 6, 7, 8, 9 十個基本數位組成。十進位制,英文名稱為 Decimal System,來源於希臘文 Decem,意為十。十進位制計數是由印度教教徒在 1500 年前發明的,由阿拉伯人傳承至 11 世紀。
八進位制,Octal,縮寫 OCT 或 O,一種以 8 為基數的計數法,採用 0,1,2,3,4,5,6,7 八個數位,逢八進 1。一些程式語言中常常以數位 0 開始表明該數位是八進位制。八進位制的數和二進位制數可以按位元對應(八進位制一位對應二進位制三位),因此常應用在計算機語言中。
二進位制是計算技術中廣泛採用的一種數制。 二進位制資料是用 0 和 1 兩個數碼來表示的數。 它的基數為2,進位規則是"逢二進一",借位規則是"借一當二"。 二進位制數(binaries)是逢2進位的進位制,0、1是基本算符 ;計算機運算基礎採用二進位制。
數制的表示有2種方法,一種表示方法是數位下標法,對於不同進位制的數可以將它們加上括號再用數位下標表示進位制:
例如:(110010011111)2 代表二進位制數 ; (6137)8 代表八進位制數
另一種是用字尾字母表示進位制:
二進位制 B (binary)
八進位制 O (octal)
十進位制 D (decimal)
十六進位制 H (hexadecimal)
(10110.01)2 這個二進位制為5位數
則從右到左 位權依次為: 2 − 2 2^{-2} 2−2、 2 − 1 2^{-1} 2−1、 2 0 2^{0} 20、 2 1 2^{1} 21、 2 2 2^{2} 22、 2 3 2^{3} 23、 2 4 2^{4} 24
則整數部分有: 0 ∗ 2 0 + 1 ∗ 2 1 + 1 ∗ 2 2 + 0 ∗ 2 3 + 1 ∗ 2 4 0*2^{0}+1*2^{1}+1*2^{2}+0*2^{3}+1*2^{4} 0∗20+1∗21+1∗22+0∗23+1∗24 =0+2+4+0+16=22
小數部分為: 0 ∗ 2 − 1 + 1 ∗ 2 − 2 0*2^{-1}+1*2^{-2} 0∗2−1+1∗2−2=0.25
整數與小數相加為:22+0.25=22.25
(232.22)O這個八進位製為3位數
則從右到左 位權依次為:$8{-2}、$8{-1}、 8 0 、 8 1 、 8 2 8^{0}、8^{1}、8^{2} 80、81、82
則整數部分有: 2 ∗ 8 0 + 3 ∗ 8 1 + 2 ∗ 8 2 2*8^{0}+3*8^{1}+2*8^{2} 2∗80+3∗81+2∗82=2+24+128=154
小數部分為: 2 ∗ 8 − 1 + 2 ∗ 8 − 2 2*8^{-1}+2*8^{-2} 2∗8−1+2∗8−2=0.28125
整數與小數相加為:154+0.28125=154.28125
(232)16這個十六進位製為3位數
則從右到左 位權依次為: 1 6 − 1 、 1 6 0 、 1 6 1 、 1 6 2 16^{-1}、16^{0}、16^{1}、16^{2} 16−1、160、161、162
則整數部分有: 2 ∗ 1 6 0 + 3 ∗ 1 6 1 + 2 ∗ 1 6 2 2*16^{0}+3*16^{1}+2*16^{2} 2∗160+3∗161+2∗162=2+48+512=562
小數部分有: 6 ∗ 1 6 − 1 6*16^{-1} 6∗16−1=0.375
整數部分與小數部分相加:562+0.375=562.375
方法:除x取餘倒讀法(整數),乘x取整正讀法(小數)
將整數和小數分別轉換,再拼接起來,也就是十進位制轉哪個進位制就除以哪個進位制的位數,即轉2除以2,轉8除以8,依次類推;小數位乘以該進位制位數,即轉8乘8,乘後去整數為,再以小數位繼續乘,直至小數位為0。
方法:除2取餘倒讀法(整數部分)、乘2取整正讀法(小數部分)。
將該十進位制數除以2,直到商為0時為止,再倒讀餘數1或0,得到整數部分(11100001);將該十進位制的小數乘以2,取整數後,再取所的整數的小數位反覆乘2,直到乘積的小數部分為0為止,即得到小數部分(101)。
方法:除8取餘倒讀法(整數部分)、乘8取整正讀法(小數部分)。
將該十進位制數除以8,直到商為0時為止,再倒讀餘數1或0,得到整數部分(1750);將該十進位制的小數部分乘以8,取整數後,再取所的整數的小數位反覆乘8,直到乘積的小數部分為0或位數達到所需的精確度要求為止,即得到小數部分(0.4)
方法:除16取餘倒讀法(整數部分)、乘16取整正讀法(小數部分)。
將該十進位制數除以16,直到商為0時為止,再倒讀餘數1或0,得到整數部分(15F5);將該十進位制的小數部分乘以16,取整數,反覆乘16,直到乘積的小數部分為0,即得到小數部分。
方法:3位分一組,按2相加
以小數點為界,整數部分從右向左每3位為一組,若最後一組不足3位,則在最高位前面添0補足3位,然後將每組中的二進位制數按2的權相加,得到對應的八進位制數;小數部分從左向右每3位分為一組,最後一組不足3位時,尾部用0補足3位,同上按2權相加,然後按照順序寫出每組二進位制數對應的八進位制數即可。
方法:4位元分一組,按2相加
以小數點為界,整數部分從右向左每4位元為一組,若最後一組不足4位元,則在最高位前面添0補足4位元,然後將每組中的二進位制數按權相加,得到對應的十六進位制數;小數部分從左向右每4位元分為一組,最後一組不足4位元時,尾部用0補足4位元,同上按2權相加,然後按照順序寫出每組二進位制數對應的十六進位制數即可。
方法:各除2取餘,0補夠3位
從八進位制數的低位開始,將每一位上的八進位制數除以2得到對應的3位二進位制數,位數不夠的補0;小數部分也同上進行轉換。
方法:各除2取餘,0補夠4位元
從十六進位制數的低位開始,將每一位上的十六進位制數寫成對應的4位元二進位制數,位數不夠的補0;小數部分也同上進行轉換。
十進位制 Decimal | 八進位制 Octal | 十六進位制 Hexadecimal | 二進位制 Binary |
---|---|---|---|
0 | /000 | 0x00 | 0 0 0 0 0 0 0 0 |
1 | /001 | 0x01 | 0 0 0 0 0 0 0 1 |
2 | /002 | 0x02 | 0 0 0 0 0 0 1 0 |
3 | /003 | 0x03 | 0 0 0 0 0 0 1 1 |
4 | /004 | 0x04 | 0 0 0 0 0 1 0 0 |
5 | /005 | 0x05 | 0 0 0 0 0 1 0 1 |
6 | /006 | 0x06 | 0 0 0 0 0 1 1 0 |
7 | /007 | 0x07 | 0 0 0 0 0 1 1 1 |
8 | /010 | 0x08 | 0 0 0 0 1 0 0 0 |
9 | /011 | 0x09 | 0 0 0 0 1 0 0 1 |
10 | /012 | 0x0A | 0 0 0 0 1 0 1 0 |
11 | /013 | 0x0B | 0 0 0 0 1 0 1 1 |
12 | /014 | 0x0C | 0 0 0 0 1 1 0 0 |
13 | /015 | 0x0D | 0 0 0 0 1 1 0 1 |
14 | /016 | 0x0E | 0 0 0 0 1 1 1 0 |
15 | /017 | 0x0F | 0 0 0 0 1 1 1 1 |
16 | /020 | 0x10 | 0 0 0 1 0 0 0 0 |
17 | /021 | 0x11 | 0 0 0 1 0 0 0 1 |
18 | /022 | 0x12 | 0 0 0 1 0 0 1 0 |
19 | /023 | 0x13 | 0 0 0 1 0 0 1 1 |
20 | /024 | 0x14 | 0 0 0 1 0 1 0 0 |
21 | /025 | 0x15 | 0 0 0 1 0 1 0 1 |
22 | /026 | 0x16 | 0 0 0 1 0 1 1 0 |
23 | /027 | 0x17 | 0 0 0 1 0 1 1 1 |
24 | /030 | 0x18 | 0 0 0 1 1 0 0 0 |
25 | /031 | 0x19 | 0 0 0 1 1 0 0 1 |
26 | /032 | 0x1A | 0 0 0 1 1 0 1 0 |
27 | /033 | 0x1B | 0 0 0 1 1 0 1 1 |
28 | /034 | 0x1C | 0 0 0 1 1 1 0 0 |
29 | /035 | 0x1D | 0 0 0 1 1 1 0 1 |
30 | /036 | 0x1E | 0 0 0 1 1 1 1 0 |
31 | /037 | 0x1F | 0 0 0 1 1 1 1 1 |
32 | /040 | 0x20 | 0 0 1 0 0 0 0 0 |
33 | /041 | 0x21 | 0 0 1 0 0 0 0 1 |
34 | /042 | 0x22 | 0 0 1 0 0 0 1 0 |
35 | /043 | 0x23 | 0 0 1 0 0 0 1 1 |
36 | /044 | 0x24 | 0 0 1 0 0 1 0 0 |
37 | /045 | 0x25 | 0 0 1 0 0 1 0 1 |
38 | /046 | 0x26 | 0 0 1 0 0 1 1 0 |
39 | /047 | 0x27 | 0 0 1 0 0 1 1 1 |
40 | /050 | 0x28 | 0 0 0 1 1 0 0 0 |
41 | /051 | 0x29 | 0 0 0 1 1 0 0 1 |
42 | /052 | 0x2A | 0 0 1 0 1 0 1 0 |
43 | /053 | 0x2B | 0 0 1 0 1 0 1 1 |
44 | /054 | 0x2C | 0 0 1 0 1 1 0 0 |
45 | /055 | 0x2D | 0 0 1 0 1 1 0 1 |
46 | /056 | 0x2E | 0 0 1 0 1 1 1 0 |
47 | /057 | 0x2F | 0 0 1 0 1 1 1 1 |
48 | /060 | 0x30 | 0 0 1 1 0 0 0 0 |
49 | /061 | 0x31 | 0 0 1 1 0 0 0 1 |
50 | /062 | 0x32 | 0 0 1 1 0 0 1 0 |
51 | /063 | 0x33 | 0 0 1 1 0 0 1 1 |
52 | /064 | 0x34 | 0 0 1 1 0 1 0 0 |
53 | /065 | 0x35 | 0 0 1 1 0 1 0 1 |
54 | /066 | 0x36 | 0 0 1 1 0 1 1 0 |
55 | /067 | 0x37 | 0 0 1 1 0 1 1 1 |
56 | /070 | 0x38 | 0 0 1 1 1 0 0 0 |
57 | /071 | 0x39 | 0 0 1 1 1 0 0 1 |
58 | /072 | 0x3A | 0 0 1 1 1 0 1 0 |
59 | /073 | 0x3B | 0 0 1 1 1 0 1 1 |
60 | /074 | 0x3C | 0 0 1 1 1 1 0 0 |
61 | /075 | 0x3D | 0 0 1 1 1 1 0 1 |
62 | /076 | 0x3E | 0 0 1 1 1 1 1 0 |
63 | /077 | 0x3F | 0 0 1 1 1 1 1 1 |
64 | /100 | 0x40 | 0 1 0 0 0 0 0 0 |
65 | /101 | 0x41 | 0 1 0 0 0 0 0 1 |
66 | /102 | 0x42 | 0 1 0 0 0 0 1 0 |
67 | /103 | 0x43 | 0 1 0 0 0 0 1 1 |
68 | /104 | 0x44 | 0 1 0 0 0 1 0 0 |
69 | /105 | 0x45 | 0 1 0 0 0 1 0 1 |
70 | /106 | 0x46 | 0 1 0 0 0 1 1 0 |
71 | /107 | 0x47 | 0 1 0 0 0 1 1 1 |
72 | /110 | 0x48 | 0 1 0 0 1 0 0 0 |
73 | /111 | 0x49 | 0 1 0 0 1 0 0 1 |
74 | /112 | 0x4A | 0 1 0 0 1 0 1 0 |
75 | /113 | 0x4B | 0 1 0 0 1 0 1 1 |
76 | /114 | 0x4C | 0 1 0 0 1 1 0 0 |
77 | /115 | 0x4D | 0 1 0 0 1 1 0 1 |
78 | /116 | 0x4E | 0 1 0 0 1 1 1 0 |
79 | /117 | 0x4F | 0 1 0 0 1 1 1 1 |
80 | /120 | 0x50 | 0 1 0 1 0 0 0 0 |
81 | /121 | 0x51 | 0 1 0 1 0 0 0 1 |
82 | /122 | 0x52 | 0 1 0 1 0 0 1 0 |
83 | /123 | 0x53 | 0 1 0 1 0 0 1 1 |
84 | /124 | 0x54 | 0 1 0 1 0 1 0 0 |
85 | /125 | 0x55 | 0 1 0 1 0 1 0 1 |
86 | /126 | 0x56 | 0 1 0 1 0 1 1 0 |
87 | /127 | 0x57 | 0 1 0 1 0 1 1 1 |
88 | /130 | 0x58 | 0 1 0 1 1 0 0 0 |
89 | /131 | 0x59 | 0 1 0 1 1 0 0 1 |
90 | /132 | 0x5A | 0 1 0 1 1 0 1 0 |
91 | /133 | 0x5B | 0 1 0 1 1 0 1 1 |
92 | /134 | 0x5C | 0 1 0 1 1 1 0 0 |
93 | /135 | 0x5D | 0 1 0 1 1 1 0 1 |
94 | /136 | 0x5E | 0 1 0 1 1 1 1 0 |
95 | /137 | 0x5F | 0 1 0 1 1111 |
96 | /140 | 0x60 | 0 1 1 0 0 0 0 0 |
97 | /141 | 0x61 | 0 1 1 0 0 0 0 1 |
98 | /142 | 0x62 | 0 1 1 0 0 0 1 0 |
99 | /143 | 0x63 | 0 1 1 0 0 0 1 1 |
100 | /144 | 0x64 | 0 1 1 0 0 1 0 0 |
101 | /145 | 0x65 | 0 1 1 0 0 1 0 1 |
102 | /146 | 0x66 | 0 1 1 0 0 1 1 0 |
103 | /147 | 0x67 | 0 1 1 0 0 1 1 1 |
104 | /150 | 0x68 | 0 1 1 0 1 0 0 0 |
105 | /151 | 0x69 | 0 1 1 0 1 0 0 1 |
106 | /152 | 0x6A | 0 1 1 0 1 0 1 0 |
107 | /153 | 0x6B | 0 1 1 0 1 0 1 1 |
108 | /154 | 0x6C | 0 1 1 0 1 1 0 0 |
109 | /155 | 0x6D | 0 1 1 0 1 1 0 1 |
110 | /156 | 0x6E | 0 1 1 0 1 1 1 0 |
111 | /157 | 0x6F | 0 1 1 0 1 1 1 1 |
112 | /160 | 0x70 | 0 1 1 1 0 0 0 0 |
113 | /161 | 0x71 | 0 1 1 1 0 0 0 1 |
114 | /162 | 0x72 | 0 1 1 1 0 0 1 0 |
115 | /163 | 0x73 | 0 1 1 1 0 0 1 1 |
116 | /164 | 0x74 | 0 1 1 1 0 1 0 0 |
117 | /165 | 0x75 | 0 1 1 1 0 1 0 1 |
118 | /166 | 0x76 | 0 1 1 1 0 1 1 0 |
119 | /167 | 0x77 | 0 1 1 1 0 1 1 1 |
120 | /170 | 0x78 | 0 1 1 1 1 0 0 0 |
121 | /171 | 0x79 | 0 1 1 1 1 0 0 1 |
122 | /172 | 0x7A | 0 1 1 1 1 0 1 0 |
123 | /173 | 0x7B | 0 1 1 1 1 0 1 1 |
124 | /174 | 0x7C | 0 1 1 1 1 1 0 0 |
125 | /175 | 0x7D | 0 1 1 1 1 1 0 1 |
126 | /176 | 0x7E | 0 1 1 1 1 1 1 0 |
127 | /177 | 0x7F | 0 1 1 1 1 1 1 1 |
128 | /200 | 0x80 | 1 0 0 0 0 0 0 0 |
129 | /201 | 0x81 | 1 0 0 0 0 0 0 1 |
130 | /202 | 0x82 | 1 0 0 0 0 0 1 0 |
131 | /203 | 0x83 | 1 0 0 0 0 0 1 1 |
132 | /204 | 0x84 | 1 0 0 0 0 1 0 0 |
133 | /205 | 0x85 | 1 0 0 0 0 1 0 1 |
134 | /206 | 0x86 | 1 0 0 0 0 1 1 0 |
135 | /207 | 0x87 | 1 0 0 0 0 1 1 1 |
136 | /210 | 0x88 | 1 0 0 0 1 0 0 0 |
137 | /211 | 0x89 | 1 0 0 0 1 0 0 1 |
138 | /212 | 0x8A | 1 0 0 0 1 0 1 0 |
139 | /213 | 0x8B | 1 0 0 0 1 0 1 1 |
140 | /214 | 0x8C | 1 0 0 0 1 1 0 0 |
141 | /215 | 0x8D | 1 0 0 0 1 1 0 1 |
142 | /216 | 0x8E | 1 0 0 0 1 1 1 0 |
143 | /217 | 0x8F | 1 0 0 0 1 1 1 1 |
144 | /220 | 0x90 | 1 0 0 1 0 0 0 0 |
145 | /221 | 0x91 | 1 0 0 1 0 0 0 1 |
146 | /222 | 0x92 | 1 0 0 1 0 0 1 0 |
147 | /223 | 0x93 | 1 0 0 1 0 0 1 1 |
148 | /224 | 0x94 | 1 0 0 1 0 1 0 0 |
149 | /225 | 0x95 | 1 0 0 1 0 1 0 1 |
150 | /226 | 0x96 | 1 0 0 1 0 1 1 0 |
151 | /227 | 0x97 | 1 0 0 1 0 1 1 1 |
152 | /230 | 0x98 | 1 0 0 1 1 0 0 0 |
153 | /231 | 0x99 | 1 0 0 1 1 0 0 1 |
154 | /232 | 0x9A | 1 0 0 1 1 0 1 0 |
155 | /233 | 0x9B | 1 0 0 1 1 0 1 1 |
156 | /234 | 0x9C | 1 0 0 1 1 1 0 0 |
157 | /235 | 0x9D | 1 0 0 1 1 1 0 1 |
158 | /236 | 0x9E | 1 0 0 1 1 1 1 0 |
159 | /237 | 0x9F | 1 0 0 1 1 1 1 1 |
160 | /240 | 0xA0 | 1 0 1 0 0 0 0 0 |
161 | /241 | 0xA1 | 1 0 1 0 0 0 0 1 |
162 | /242 | 0xA2 | 1 0 1 0 0 0 1 0 |
163 | /243 | 0xA3 | 1 0 1 0 0 0 1 1 |
164 | /244 | 0xA4 | 1 0 1 0 0 1 0 0 |
165 | /245 | 0xA5 | 1 0 1 0 0 1 0 1 |
166 | /246 | 0xA6 | 1 0 1 0 0 1 1 0 |
167 | /247 | 0xA7 | 1 0 1 0 0 1 1 1 |
168 | /250 | 0xA8 | 1 0 1 0 1 0 0 0 |
169 | /251 | 0xA9 | 1 0 1 0 1 0 0 1 |
170 | /252 | 0xAA | 1 0 1 0 1 0 1 0 |
171 | /253 | 0xAB | 1 0 1 0 1 0 1 1 |
172 | /254 | 0xAC | 1 0 1 0 1 1 0 0 |
173 | /255 | 0xAD | 1 0 1 0 1 1 0 1 |
174 | /256 | 0xAE | 1 0 1 0 1 1 1 0 |
175 | /257 | 0xAF | 1 0 1 0 1 1 1 1 |
176 | /260 | 0xB0 | 1 0 1 1 0 0 0 0 |
177 | /261 | 0xB1 | 1 0 1 1 0 0 0 1 |
178 | /262 | 0xB2 | 1 0 1 1 0 0 1 0 |
179 | /263 | 0xB3 | 1 0 1 1 0 0 1 1 |
180 | /264 | 0xB4 | 1 0 1 1 0 1 0 0 |
181 | /265 | 0xB5 | 1 0 1 1 0 1 0 1 |
182 | /266 | 0xB6 | 1 0 1 1 0 1 1 0 |
183 | /267 | 0xB7 | 1 0 1 1 0 1 1 1 |
184 | /270 | 0xB8 | 1 0 1 1 1 0 0 0 |
185 | /271 | 0xB9 | 1 0 1 1 1 0 0 1 |
186 | /272 | 0xBA | 1 0 1 1 1 0 1 0 |
187 | /273 | 0xBB | 1 0 1 1 1 0 1 1 |
188 | /274 | 0xBC | 1 0 1 1 1 1 0 0 |
189 | /275 | 0xBD | 1 0 1 1 1 1 0 1 |
190 | /276 | 0xBE | 1 0 1 1 1 1 1 0 |
191 | /277 | 0xBF | 1 0 1 1 1 1 1 1 |
192 | /300 | 0xC0 | 1 1 0 0 0 0 0 0 |
193 | /301 | 0xC1 | 1 1 0 0 0 0 0 1 |
194 | /302 | 0xC2 | 1 1 0 0 0 0 1 0 |
195 | /303 | 0xC3 | 1 1 0 0 0 0 1 1 |
196 | /304 | 0xC4 | 1 1 0 0 0 1 0 0 |
197 | /305 | 0xC5 | 1 1 0 0 0 1 0 1 |
198 | /306 | 0xC6 | 1 1 0 0 0 1 1 0 |
199 | /307 | 0xC7 | 1 1 0 0 0 1 1 1 |
200 | /310 | 0xC8 | 1 1 0 0 1 0 0 0 |
201 | /311 | 0xC9 | 1 1 0 0 1 0 0 1 |
202 | /312 | 0xCA | 1 1 0 0 1 0 1 0 |
203 | /313 | 0xCB | 1 1 0 0 1 0 1 1 |
204 | /314 | 0xCC | 1 1 0 0 1 1 0 0 |
205 | /315 | 0xCD | 1 1 0 0 1 1 0 1 |
206 | /316 | 0xCE | 1 1 0 0 1 1 1 0 |
207 | /317 | 0xCF | 1 1 0 0 1 1 1 1 |
208 | /320 | 0xD0 | 1 1 0 1 0 0 0 0 |
209 | /321 | 0xD1 | 1 1 0 1 0 0 0 1 |
210 | /322 | 0xD2 | 1 1 0 1 0 0 1 0 |
211 | /323 | 0xD3 | 1 1 0 1 0 0 1 1 |
212 | /324 | 0xD4 | 1 1 0 1 0 1 0 0 |
213 | /325 | 0xD5 | 1 1 0 1 0 1 0 1 |
214 | /326 | 0xD6 | 1 1 0 1 0 1 1 0 |
215 | /327 | 0xD7 | 1 1 0 1 0 1 1 1 |
216 | /330 | 0xD8 | 1 1 0 1 1 0 0 0 |
217 | /331 | 0xD9 | 1 1 0 1 1 0 0 1 |
218 | /332 | 0xDA | 1 1 0 1 1 0 1 0 |
219 | /333 | 0xDB | 1 1 0 1 1 0 1 1 |
220 | /334 | 0xDC | 1 1 0 1 1 1 0 0 |
221 | /335 | 0xDD | 1 1 0 1 1 1 0 1 |
222 | /336 | 0xDE | 1 1 0 1 1 1 1 0 |
223 | /337 | 0xDF | 1 1 0 1 1 1 1 1 |
224 | /340 | 0xE0 | 1 1 1 0 0 0 0 0 |
225 | /341 | 0xE1 | 1 1 1 0 0 0 0 1 |
226 | /342 | 0xE2 | 1 1 1 0 0 0 1 0 |
227 | /343 | 0xE3 | 1 1 1 0 0 0 1 1 |
228 | /344 | 0xE4 | 1 1 1 0 0 1 0 0 |
229 | /345 | 0xE5 | 1 1 1 0 0 1 0 1 |
230 | /346 | 0xE6 | 1 1 1 0 0 1 1 0 |
231 | /347 | 0xE7 | 1 1 1 0 0 1 1 1 |
232 | /350 | 0xE8 | 1 1 1 0 1 0 0 0 |
233 | /351 | 0xE9 | 1 1 1 0 1 0 0 1 |
234 | /352 | 0xEA | 1 1 1 0 1 0 1 0 |
235 | /353 | 0xEB | 1 1 1 0 1 0 1 1 |
236 | /354 | 0xEC | 1 1 1 0 1 1 0 0 |
237 | /355 | 0xED | 1 1 1 0 1 1 0 1 |
238 | /356 | 0xEE | 1 1 1 0 1 1 1 0 |
239 | /357 | 0xEF | 1 1 1 0 1 1 1 1 |
240 | /360 | 0xF0 | 1 1 1 1 0 0 0 0 |
241 | /361 | 0xF1 | 1 1 1 1 0 0 0 1 |
242 | /362 | 0xF2 | 1 1 1 1 0 0 1 0 |
243 | /363 | 0xF3 | 1 1 1 1 0 0 1 1 |
244 | /364 | 0xF4 | 1 1 1 1 0 1 0 0 |
245 | /365 | 0xF5 | 1 1 1 1 0 1 0 1 |
246 | /366 | 0xF6 | 1 1 1 1 0 1 1 0 |
247 | /367 | 0xF7 | 1 1 1 1 0 1 1 1 |
248 | /370 | 0xF8 | 1 1 1 1 1 0 0 0 |
249 | /371 | 0xF9 | 1 1 1 1 1 0 0 1 |
250 | /372 | 0xFA | 1 1 1 1 1 0 1 0 |
251 | /373 | 0xFB | 1 1 1 1 1 0 1 1 |
252 | /374 | 0xFC | 1 1 1 1 1 1 0 0 |
253 | /375 | 0xFD | 1 1 1 1 1 1 0 1 |
254 | /376 | 0xFE | 1 1 1 1 1 1 1 0 |
255 | /377 | 0xFF | 1 1 1 1 1 1 1 1 |
到此這篇關於十六進位制、十進位制、八進位制、二進位制常用進位制轉換的文章就介紹到這了,更多相關常用進位制轉換內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45