首頁 > 科技

宏觀影像技術用在「微觀細胞」上!當天文學遇上腫瘤生物學

2021-07-14 04:16:01

讓癌症專家頭痛不已的問題

Janis Taube是約翰霍普金斯大學的病理學教授,她的主要工作是通過顯微鏡來觀察免疫細胞與腫瘤細胞間的互動作用,以此預測病人對於特定治療的反應。她會使用熒光染劑來標示特定的細胞或蛋白質,如此便能觀察細胞間的互動作用。不過她也遇到不少問題,首先,不同熒光染劑的訊號會迭加在一起,這會影響觀察結果。另外在觀察時,她通常是觀察同一平面上的細胞間互動作用,但細胞其實是處在三維空間,因此也要將三維空間中的互動作用考慮進去。

約翰霍普金斯大學病理學教授–Janis Taube。

如果你覺得這沒甚麼,但將這些問題放到有著數百萬細胞的組織樣本中,你就知道這問題的複雜程度了。要將彼此干擾的熒光訊號拼接成完整的影像,還要藉此判斷細胞在三維空間中的互動作用,這簡直讓 Taube抓狂。雖然面對這個問題她無從下手,但約翰霍普金斯大學有另一批專家可是天天跟這類問題打交道。

AlexanderSzalay是約翰霍普金斯大學物理系、天文系和電腦科學系的教授,他同時也是「史隆數字巡天計劃」注1委員會的主席。他的團隊每天要進行的工作,就是將數百萬張由望遠鏡拍出,有著數十億天體的影象拼接起來,並以此繪製出宇宙的 3D影象。講到這兒,你有沒有發現這和 Taube的研究有甚麼相似之處?

約翰霍普金斯大學天文系教授–Alexander Szalay。

運用望遠鏡 (顯微鏡)觀察有著不同特徵 (不同熒光訊號)的眾多天體 (數百萬細胞),在天空中 (三維空間)的位置與相互關係 (細胞間互動作用)。

天文學與腫瘤生物學的研究方法和資料呈現的方式,其實可以相互借鑑。

仔細來看,Taube和Szalay要處理的影像問題其實是相似的。不過某種程度上,天文學面對的影像比腫瘤生物學更難處理。畢竟天體會隨著季節有所不同,而且望遠鏡還會受到氣候的干擾,但天文學家在有這麼多變因的情況下,仍成功繪製出宇宙的影象。相較之下,處理不會動又沒有天氣干擾的組織切片,豈不手到擒來?

於是,一場宏觀與微觀、天文與腫瘤生物學的碰撞油然而生1。下面,讓我們一起了解這個跨領域的合作究竟是怎麼發生的吧~

免疫療法的效用與免疫熒光染色的瓶頸

故事的起源得先從 PD – 1和 PD – L1阻斷劑說起。自從科學家們發現人體內的 T細胞會攻擊腫瘤細胞後,便開始研究如何活化 T細胞去消滅腫瘤,不過腫瘤細胞也不笨。

T細胞表面上有一個名叫 PD– 1 (Programmed cell death protein 1)的蛋白質,該蛋白質的活化會抑制 T細胞的活性,而這是身體調節 T細胞活性的機制。畢竟 T細胞的過度活化也會傷及身體其他部分,因此勢必要有一個能抑制其活性的機制存在,而這個機制,正好就被腫瘤細胞所利用。

腫瘤細胞為了避免被 T細胞攻擊,會在其細胞表面上產生 PD– L1 (Programmed cell death 1 ligand 1)這個蛋白質。PD– L1與 T細胞表面上的 PD– 1結合後,會抑制T細胞的活性,藉此讓腫瘤細胞躲避 T細胞的攻擊。

為了應對腫瘤細胞抑制 T細胞的能力,科學家們便研製出 PD– 1和 PD– L1的阻斷劑,讓兩者不會結合,如此便能讓 T細胞保持戰鬥力。而 PD– 1 / PD– L1阻斷劑也已成為美國 FDA核準的免疫療法藥物,不過可惜的是,並非所有的癌症病患都適用這種療法,為什麼呢?

PD–1和PD–L1的作用與其抑制劑(Anti PD–1 / PD–L1 )的應用。

前面提到,腫瘤細胞會藉助 PD– L1抑制 T細胞的活性。但如果今天病患的腫瘤細胞不會表現 PD– L1,那即便給病患 PD– 1 / PD– L1阻斷劑,也不會起到多大的作用。

另外,腫瘤組織會在人體內會形成複雜的腫瘤微環境注2,在這個微環境中,多種細胞會產生複雜的互動作用,這就讓 T細胞在微環境中難以接觸到腫瘤細胞。此時就算給予 PD– 1 / PD– L1阻斷劑,若 T細胞碰不到腫瘤細胞,也是英雄無用武之地。

因此,能快速判斷 PD – 1 / PD – L1阻斷劑是否對腫瘤有效的方法,就對病患的治療非常重要。如此不僅能節省醫療支出,也能讓病患及早改用其他有效的治療手段,增加他們的生存機率。

免疫組織化學染色法的應用與其挑戰

目前美國 FDA認可判斷 PD– 1 / PD– L1阻斷劑是否有效的方式之一,是對病患的腫瘤組織使用免疫組織化學染色法 ( immunohistochemistry,IHC )注3,這個方法可以讓特定的蛋白質在組織切片中用染色法專一地呈現出來。因此藉助 IHC,便能判斷出該腫瘤組織是否會表現 PD– L1,另外也能觀察在給病患使用 PD– 1 / PD– L1阻斷劑後,T細胞與腫瘤細胞的相互作用2。

用於判斷T細胞是否會與腫瘤細胞作用的示意圖(上)和實際的IHC圖(下)。

IHC看起是不錯的判斷方法,但其實仍有不少侷限性。

首先 IHC需要染色,目前常用的是熒光染色劑。熒光染劑所產生的訊號夠強,利於研究人員判斷蛋白質是否有表現。但隨著使用的熒光顏色數量增加,這些訊號就相互迭加造成干擾。

另外,當研究人員放大觀察組織樣本時,熒光訊號的解析度會降低,這就讓研究人員難以判斷蛋白質的表現量和細胞的互動作用。接著是訊號呈現的問題,研究人員通常會盡量收集位在同一平面上的熒光訊號,這樣才能獲得清晰的視野,也才好比較訊號的強弱。但組織切片本身是三維空間,如果只選擇同一平面的熒光訊號,就會忽略細胞在其他維度的互動作用。

而當把上述的三個問題 (多種熒光的迭加干擾、放大後熒光訊號解析度降低、三維空間的熒光訊號)放到有著數百萬細胞的組織切片上,問題就更棘手了。這樣的影像資料光是要彙整就是浩大工程,深入解讀更是困難。

多顏色熒光染劑在腫瘤組織切片的結果。

天文與腫瘤生物學的碰撞 ——AstroPath的誕生

雖然這些問題對生物學家來說是很大的挑戰,但正如開頭所說,這可難不倒天文學家。於是 2018年,Taube和Szalay兩個不同領域的專家一拍即合,開始以天文學的影象處理工具與方式為基礎,創造出一個可分析多因素組織切片影像的模型。而他們於次年 NIH的資料科學系列研討會上,就講述如何利用描繪星系的技術來繪製腫瘤的微環境,並希望通過這種方法瞭解腫瘤的結構及弱點3。

Taube和Szalay的演講影片

2020年,約翰霍普金斯大學與馬克癌症研究基金會 (The Mark Foundation for Cancer Research)合作,創建新的癌症研究中心。該中心彙集了天文學影象分析、病理學、電腦科學、癌症基因體學和免疫學等多個領域的專家,一同建構了一個運用天文學方式分析病理學影像的平臺 – AstroPath4。

而今年 6月釋出在 Science上的研究1,研究團隊就揭示瞭如何運用AstroPath,將多熒光染色的免疫組織切片影像,彙整成一張解析度可達單個細胞間互動作用的多色影像。

利用AstroPath

所繪製出的完整多熒光免疫組織切片的影像,該影像即使放大,其解析度都能達到單個細胞的層級。

而在AstroPath的幫助下,Taube不僅能夠從影像中清楚看到 PD– L1在腫瘤細胞的表現量,也能看到腫瘤細胞與 T細胞在腫瘤微環境中的相互作用,而這些影像都有助於她預測 PD– 1 / PD– L1阻斷劑的效用。Taube也將AstroPath的結果,與其他判斷 PD– 1 / PD– L1阻斷劑效用的方式做比較,發現AstroPath的影像確實能很好的預測 PD– 1 / PD– L1阻斷劑的效用。而這個結果讓研究團隊有信心,未來AstroPath能成為協助臨床治療的分析工具。

藉助AstroPath的影像,能夠看出腫瘤細胞的PD–L1表現量強弱,同時也能看到組織切片中,免疫細胞與腫瘤細胞間的相互作用。

大資料科學的來臨

AstroPath的初步成功,無疑給研究團隊很大的信心,不過Szaley認為仍有很長的路要走。目前AstroPath只分析肺癌和兩種面板癌,共 2.26億個細胞的影像資料,其資料量就已超過史隆數字巡天計劃的所有資料總和了。但如果要想讓AstroPath成為協助臨床癌症治療的工具,只分析這麼一點癌症種類,顯然是不足的。而且這麼大的資料量,也不是普通單位能夠處理的。

「大資料正在改變科學,從天文學、基因體學到海洋學,到處都有應用。資料密集型的科學發現是一種新的模式,而我們接下來面臨的技術挑戰是,如何在大規模收集資料時獲得一致、可重複的結果?接下來還有一些重要步驟:我們要通過多個機構的研究,將這些測試標準化,然後進行前瞻性臨床試驗,讓病人們享受到AstroPath平臺所帶來的診斷優勢。」Szaley如此說道。

而 Taube希望AstroPath除了能幫助醫師進行診斷,未來也能應用AstroPath繪製出一個公開的腫瘤免疫圖譜,就像癌症基因體圖譜 (The Cancer Genome Atlas)注4一樣,增進腫瘤相關的研究。

天文學是研究「天體」這個宏觀領域的學科;腫瘤生物學則是研究「腫瘤細胞」的微觀領域。這兩個學科的研究物件可說是天差地遠,理應不會有什麼交集。但兩個領域的碰撞,激發出AstroPath這種讓人意想不到的發明。不過相信隨著科學家們的思想越來越開闊,未來這種跨領域的合作只會越來越多。就讓我們一同期待,未來科學界還會再撞出甚麼有趣的火花吧~

註釋

1.史隆數字巡天計劃:是使用位於新墨西哥州阿帕契點天文臺的 2.5米口徑望遠鏡進行的紅移巡天項目。該項目開始於 2000年,以阿爾弗雷德·史隆的名字命名,計劃觀測 25%的天空,獲取超過一百萬個天體的多色測光資料和光譜資料。2006年,史隆數字化巡天進入了名為 SDSS-II的新階段,進一步探索銀河系的結構和組成。

2.免疫組織化學染色法:在抗體上結合熒光或可呈色的化學物質,利用免疫學原理中抗原和抗體間專一性的結合反應,檢測細胞或組織中是否有目標抗原的存在,此方式不只可以用來測知抗原的表現量也可觀察抗原所表現的位置。只要是能夠讓抗體結合的物質,也就是具有抗原性的物質包括蛋白質、核酸、多醣、病原體等都可檢測。免疫組織化學的優勢在於專一性、靈敏度、簡便快速以及成本低廉,所以廣為醫院採用,通常是藉助特定的腫瘤標記來篩選癌症。免疫組織化學染色法對基礎研究及預防和診療上都是相當重要的一個方法。

3.腫瘤微環境:是腫瘤細胞與周圍的其他細胞,如血管、纖維母細胞、免疫細胞等多種細胞共同組成的特殊環境。腫瘤細胞可以藉助分泌各式細胞因子,來讓微環境有利於自身發展。例如微環境中能促進血管新生,同時也有很強的免疫抑制能力,讓前來殺敵的免疫細胞無法作用。

4.癌症基因體圖譜:大規模地蒐集特定癌症病患的相關臨床記錄、腫瘤組織以及相對應正常組織,進行定序以及生物資訊分析,整合資料並公開定序資料與分析結果於官方網站供大家瀏覽及下載,利於世界各地的科學家、研究人員或是學術單位取得使用。藉以流通知識、促進研究,並打造完整的癌症基因組資訊,助於癌症的預防、診斷與治療。

科技改變世界,知識改變命運!歡迎點贊、關注「新千萬個為什麼」,第一時間瞭解電腦、手機、相機、數碼、3C等科技資訊!


IT145.com E-mail:sddin#qq.com