2021-05-12 14:32:11
執行Hadoop自帶的wordcount單詞統計程式
0.前言
前面一篇《Hadoop初體驗:快速搭建Hadoop偽分散式環境》搭建了一個Hadoop的環境,現在就使用Hadoop自帶的wordcount程式來做單詞統計的案例。
http://www.linuxidc.com/Linux/2017-09/146694.htm
1.使用範例程式實現單詞統計
(1)wordcount程式
wordcount程式在hadoop的share目錄下,如下:
[root@linuxidc mapreduce]# pwd
/usr/local/hadoop/share/hadoop/mapreduce
[root@linuxidc mapreduce]# ls
hadoop-mapreduce-client-app-2.6.5.jar hadoop-mapreduce-client-jobclient-2.6.5-tests.jar
hadoop-mapreduce-client-common-2.6.5.jar hadoop-mapreduce-client-shuffle-2.6.5.jar
hadoop-mapreduce-client-core-2.6.5.jar hadoop-mapreduce-examples-2.6.5.jar
hadoop-mapreduce-client-hs-2.6.5.jar lib
hadoop-mapreduce-client-hs-plugins-2.6.5.jar lib-examples
hadoop-mapreduce-client-jobclient-2.6.5.jar sources
就是這個hadoop-mapreduce-examples-2.6.5.jar程式。
(2)建立HDFS資料目錄
建立一個目錄,用於儲存MapReduce任務的輸入檔案:
[root@linuxidc ~]# hadoop fs -mkdir -p /data/wordcount
建立一個目錄,用於儲存MapReduce任務的輸出檔案:
[root@linuxidc ~]# hadoop fs -mkdir /output
檢視剛剛建立的兩個目錄:
[root@linuxidc ~]# hadoop fs -ls /
drwxr-xr-x - root supergroup 0 2017-09-01 20:34 /data
drwxr-xr-x - root supergroup 0 2017-09-01 20:35 /output
(3)建立一個單詞檔案,並上傳到HDFS
建立的單詞檔案如下:
[root@linuxidc ~]# cat myword.txt
linuxidc yyh
yyh xplinuxidc
katy ling
yeyonghao linuxidc
xpleaf katy
上傳該檔案到HDFS中:
[root@linuxidc ~]# hadoop fs -put myword.txt /data/wordcount
在HDFS中檢視剛剛上傳的檔案及內容:
[root@linuxidc ~]# hadoop fs -ls /data/wordcount
-rw-r--r-- 1 root supergroup 57 2017-09-01 20:40 /data/wordcount/myword.txt
[root@linuxidc ~]# hadoop fs -cat /data/wordcount/myword.txt
linuxidc yyh
yyh xplinuxidc
katy ling
yeyonghao linuxidc
xpleaf katy
(4)執行wordcount程式
執行如下命令:
[root@linuxidc ~]# hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount /data/wordcount /output/wordcount
...
17/09/01 20:48:14 INFO mapreduce.Job: Job job_local1719603087_0001 completed successfully
17/09/01 20:48:14 INFO mapreduce.Job: Counters: 38
File System Counters
FILE: Number of bytes read=585940
FILE: Number of bytes written=1099502
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=114
HDFS: Number of bytes written=48
HDFS: Number of read operations=15
HDFS: Number of large read operations=0
HDFS: Number of write operations=4
Map-Reduce Framework
Map input records=5
Map output records=10
Map output bytes=97
Map output materialized bytes=78
Input split bytes=112
Combine input records=10
Combine output records=6
Reduce input groups=6
Reduce shuffle bytes=78
Reduce input records=6
Reduce output records=6
Spilled Records=12
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=92
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0
Total committed heap usage (bytes)=241049600
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=57
File Output Format Counters
Bytes Written=48
(5)檢視統計結果
如下:
[root@linuxidc ~]# hadoop fs -cat /output/wordcount/part-r-00000
katy 2
linuxidc 2
ling 1
xplinuxidc 2
yeyonghao 1
yyh 2
相關文章