首頁 > 軟體

如何將pytorch模型部署到安卓上的方法範例

2022-02-11 10:01:57

這篇文章演示如何將訓練好的pytorch模型部署到安卓裝置上。我也是剛開始學安卓,程式碼寫的簡單。

環境:

pytorch版本:1.10.0

模型轉化

pytorch_android支援的模型是.pt模型,我們訓練出來的模型是.pth。所以需要轉化才可以用。先看官網上給的轉化方式:

import torch
import torchvision
from torch.utils.mobile_optimizer import optimize_for_mobile

model = torchvision.models.mobilenet_v3_small(pretrained=True)
model.eval()
example = torch.rand(1, 3, 224, 224)
traced_script_module = torch.jit.trace(model, example)
optimized_traced_model = optimize_for_mobile(traced_script_module)
optimized_traced_model._save_for_lite_interpreter("app/src/main/assets/model.ptl")

這個模型在安卓對應的包:

repositories {
    jcenter()
}

dependencies {
    implementation 'org.pytorch:pytorch_android_lite:1.9.0'
    implementation 'org.pytorch:pytorch_android_torchvision:1.9.0'
}

注:pytorch_android_lite版本和轉化模型用的版本要一致,不一致就會報各種錯誤。

目前用這種方法有點問題,我採用的另一種方法。

轉化程式碼如下:

import torch
import torch.utils.data.distributed

# pytorch環境中
model_pth = 'model_31_0.96.pth' #模型的引數檔案
mobile_pt ='model.pt' # 將模型儲存為Android可以呼叫的檔案

model = torch.load(model_pth)
model.eval() # 模型設為評估模式
device = torch.device('cpu')
model.to(device)
# 1張3通道224*224的圖片
input_tensor = torch.rand(1, 3, 224, 224) # 設定輸入資料格式

mobile = torch.jit.trace(model, input_tensor) # 模型轉化
mobile.save(mobile_pt) # 儲存檔案

對應的包:

//pytorch
implementation 'org.pytorch:pytorch_android:1.10.0'
implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'

定義模型檔案和轉化後的檔案路徑。

load模型。這裡要注意,如果儲存模型

torch.save(model,'models.pth')

載入模型則是

model=torch.load('models.pth')

如果儲存模型是

torch.save(model.state_dict(),"models.pth")

載入模型則是

model.load_state_dict(torch.load('models.pth'))

定義輸入資料格式。

模型轉化,然後再儲存模型。

安卓部署

新建專案

新建安卓專案,選擇Empy Activity,然後選擇Next

然後,填寫專案資訊,選擇安卓版本,我用的4.4,點選完成

匯入包

匯入pytorch_android的包

//pytorch
implementation 'org.pytorch:pytorch_android:1.10.0'
implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'

如果有引數報錯請參照我的完整的設定,程式碼如下:

plugins {
    id 'com.android.application'
}

android {
    compileSdk 32

    defaultConfig {
        applicationId "com.example.myapplication"
        minSdk 21
        targetSdk 32
        versionCode 1
        versionName "1.0"

        testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner"
    }

    buildTypes {
        release {
            minifyEnabled false
            proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro'
        }
    }
    compileOptions {
        sourceCompatibility JavaVersion.VERSION_1_8
        targetCompatibility JavaVersion.VERSION_1_8
    }
}

dependencies {

    implementation 'androidx.appcompat:appcompat:1.3.0'
    implementation 'com.google.android.material:material:1.4.0'
    implementation 'androidx.constraintlayout:constraintlayout:2.0.4'
    testImplementation 'junit:junit:4.13.2'
    androidTestImplementation 'androidx.test.ext:junit:1.1.3'
    androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0'
    //pytorch
    implementation 'org.pytorch:pytorch_android:1.10.0'
    implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'

}

頁面檔案

頁面的設定如下:

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    tools:context=".MainActivity">

    <ImageView
        android:id="@+id/image"
        android:layout_width="match_parent"
        android:layout_height="match_parent"
        android:scaleType="fitCenter" />

    <TextView
        android:id="@+id/text"
        android:layout_width="match_parent"
        android:layout_height="wrap_content"
        android:layout_gravity="top"
        android:textSize="24sp"
        android:background="#80000000"
        android:textColor="@android:color/holo_red_light" />

</FrameLayout>

這個頁面只有兩個空間,一個展示圖片,一個顯示文字。

模型推理

新增assets資料夾,然後將轉化的模型和待測試的圖片放進去。

新增ImageNetClasses類,這個類存放類別名字。

程式碼如下:

package com.example.myapplication;

public class ImageNetClasses {
    public static String[] IMAGENET_CLASSES = new String[]{
            "Black-grass",
            "Charlock",
            "Cleavers",
            "Common Chickweed",
            "Common wheat",
            "Fat Hen",
            "Loose Silky-bent",
            "Maize",
            "Scentless Mayweed",
            "Shepherds Purse",
            "Small-flowered Cranesbill",
            "Sugar beet",

    };
}

在MainActivity類中,增加模型推理的邏輯。完成程式碼如下:

package com.example.myapplication;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.os.Bundle;
import android.util.Log;
import android.widget.ImageView;
import android.widget.TextView;

import org.pytorch.IValue;

import org.pytorch.Module;
import org.pytorch.Tensor;
import org.pytorch.torchvision.TensorImageUtils;
import org.pytorch.MemoryFormat;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import androidx.appcompat.app.AppCompatActivity;

public class MainActivity extends AppCompatActivity {

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);

        Bitmap bitmap = null;
        Module module = null;
        try {
            // creating bitmap from packaged into app android asset 'image.jpg',
            // app/src/main/assets/image.jpg
            bitmap = BitmapFactory.decodeStream(getAssets().open("1.png"));
            // loading serialized torchscript module from packaged into app android asset model.pt,
            // app/src/model/assets/model.pt
            module = Module.load(assetFilePath(this, "models.pt"));
        } catch (IOException e) {
            Log.e("PytorchHelloWorld", "Error reading assets", e);
            finish();
        }

        // showing image on UI
        ImageView imageView = findViewById(R.id.image);
        imageView.setImageBitmap(bitmap);

        // preparing input tensor
        final Tensor inputTensor = TensorImageUtils.bitmapToFloat32Tensor(bitmap,
                TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB, MemoryFormat.CHANNELS_LAST);

        // running the model
        final Tensor outputTensor = module.forward(IValue.from(inputTensor)).toTensor();

        // getting tensor content as java array of floats
        final float[] scores = outputTensor.getDataAsFloatArray();

        // searching for the index with maximum score
        float maxScore = -Float.MAX_VALUE;
        int maxScoreIdx = -1;
        for (int i = 0; i < scores.length; i++) {
            if (scores[i] > maxScore) {
                maxScore = scores[i];
                maxScoreIdx = i;
            }
        }
        System.out.println(maxScoreIdx);
        String className = ImageNetClasses.IMAGENET_CLASSES[maxScoreIdx];

        // showing className on UI
        TextView textView = findViewById(R.id.text);
        textView.setText(className);
    }

    /**
     * Copies specified asset to the file in /files app directory and returns this file absolute path.
     *
     * @return absolute file path
     */
    public static String assetFilePath(Context context, String assetName) throws IOException {
        File file = new File(context.getFilesDir(), assetName);
        if (file.exists() && file.length() > 0) {
            return file.getAbsolutePath();
        }

        try (InputStream is = context.getAssets().open(assetName)) {
            try (OutputStream os = new FileOutputStream(file)) {
                byte[] buffer = new byte[4 * 1024];
                int read;
                while ((read = is.read(buffer)) != -1) {
                    os.write(buffer, 0, read);
                }
                os.flush();
            }
            return file.getAbsolutePath();
        }
    }
}

然後執行。

 到此這篇關於如何將pytorch模型部署到安卓上的方法範例的文章就介紹到這了,更多相關pytorch模型部署到安卓內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com