<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
這篇文章演示如何將訓練好的pytorch模型部署到安卓裝置上。我也是剛開始學安卓,程式碼寫的簡單。
環境:
pytorch版本:1.10.0
pytorch_android支援的模型是.pt模型,我們訓練出來的模型是.pth。所以需要轉化才可以用。先看官網上給的轉化方式:
import torch import torchvision from torch.utils.mobile_optimizer import optimize_for_mobile model = torchvision.models.mobilenet_v3_small(pretrained=True) model.eval() example = torch.rand(1, 3, 224, 224) traced_script_module = torch.jit.trace(model, example) optimized_traced_model = optimize_for_mobile(traced_script_module) optimized_traced_model._save_for_lite_interpreter("app/src/main/assets/model.ptl")
這個模型在安卓對應的包:
repositories { jcenter() } dependencies { implementation 'org.pytorch:pytorch_android_lite:1.9.0' implementation 'org.pytorch:pytorch_android_torchvision:1.9.0' }
注:pytorch_android_lite版本和轉化模型用的版本要一致,不一致就會報各種錯誤。
目前用這種方法有點問題,我採用的另一種方法。
轉化程式碼如下:
import torch import torch.utils.data.distributed # pytorch環境中 model_pth = 'model_31_0.96.pth' #模型的引數檔案 mobile_pt ='model.pt' # 將模型儲存為Android可以呼叫的檔案 model = torch.load(model_pth) model.eval() # 模型設為評估模式 device = torch.device('cpu') model.to(device) # 1張3通道224*224的圖片 input_tensor = torch.rand(1, 3, 224, 224) # 設定輸入資料格式 mobile = torch.jit.trace(model, input_tensor) # 模型轉化 mobile.save(mobile_pt) # 儲存檔案
對應的包:
//pytorch implementation 'org.pytorch:pytorch_android:1.10.0' implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'
定義模型檔案和轉化後的檔案路徑。
load模型。這裡要注意,如果儲存模型
torch.save(model,'models.pth')
載入模型則是
model=torch.load('models.pth')
如果儲存模型是
torch.save(model.state_dict(),"models.pth")
載入模型則是
model.load_state_dict(torch.load('models.pth'))
定義輸入資料格式。
模型轉化,然後再儲存模型。
新建安卓專案,選擇Empy Activity,然後選擇Next
然後,填寫專案資訊,選擇安卓版本,我用的4.4,點選完成
匯入pytorch_android的包
//pytorch implementation 'org.pytorch:pytorch_android:1.10.0' implementation 'org.pytorch:pytorch_android_torchvision:1.10.0'
如果有引數報錯請參照我的完整的設定,程式碼如下:
plugins { id 'com.android.application' } android { compileSdk 32 defaultConfig { applicationId "com.example.myapplication" minSdk 21 targetSdk 32 versionCode 1 versionName "1.0" testInstrumentationRunner "androidx.test.runner.AndroidJUnitRunner" } buildTypes { release { minifyEnabled false proguardFiles getDefaultProguardFile('proguard-android-optimize.txt'), 'proguard-rules.pro' } } compileOptions { sourceCompatibility JavaVersion.VERSION_1_8 targetCompatibility JavaVersion.VERSION_1_8 } } dependencies { implementation 'androidx.appcompat:appcompat:1.3.0' implementation 'com.google.android.material:material:1.4.0' implementation 'androidx.constraintlayout:constraintlayout:2.0.4' testImplementation 'junit:junit:4.13.2' androidTestImplementation 'androidx.test.ext:junit:1.1.3' androidTestImplementation 'androidx.test.espresso:espresso-core:3.4.0' //pytorch implementation 'org.pytorch:pytorch_android:1.10.0' implementation 'org.pytorch:pytorch_android_torchvision:1.10.0' }
頁面的設定如下:
<?xml version="1.0" encoding="utf-8"?> <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools="http://schemas.android.com/tools" android:layout_width="match_parent" android:layout_height="match_parent" tools:context=".MainActivity"> <ImageView android:id="@+id/image" android:layout_width="match_parent" android:layout_height="match_parent" android:scaleType="fitCenter" /> <TextView android:id="@+id/text" android:layout_width="match_parent" android:layout_height="wrap_content" android:layout_gravity="top" android:textSize="24sp" android:background="#80000000" android:textColor="@android:color/holo_red_light" /> </FrameLayout>
這個頁面只有兩個空間,一個展示圖片,一個顯示文字。
新增assets資料夾,然後將轉化的模型和待測試的圖片放進去。
新增ImageNetClasses類,這個類存放類別名字。
程式碼如下:
package com.example.myapplication; public class ImageNetClasses { public static String[] IMAGENET_CLASSES = new String[]{ "Black-grass", "Charlock", "Cleavers", "Common Chickweed", "Common wheat", "Fat Hen", "Loose Silky-bent", "Maize", "Scentless Mayweed", "Shepherds Purse", "Small-flowered Cranesbill", "Sugar beet", }; }
在MainActivity類中,增加模型推理的邏輯。完成程式碼如下:
package com.example.myapplication; import android.content.Context; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.os.Bundle; import android.util.Log; import android.widget.ImageView; import android.widget.TextView; import org.pytorch.IValue; import org.pytorch.Module; import org.pytorch.Tensor; import org.pytorch.torchvision.TensorImageUtils; import org.pytorch.MemoryFormat; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import androidx.appcompat.app.AppCompatActivity; public class MainActivity extends AppCompatActivity { @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); Bitmap bitmap = null; Module module = null; try { // creating bitmap from packaged into app android asset 'image.jpg', // app/src/main/assets/image.jpg bitmap = BitmapFactory.decodeStream(getAssets().open("1.png")); // loading serialized torchscript module from packaged into app android asset model.pt, // app/src/model/assets/model.pt module = Module.load(assetFilePath(this, "models.pt")); } catch (IOException e) { Log.e("PytorchHelloWorld", "Error reading assets", e); finish(); } // showing image on UI ImageView imageView = findViewById(R.id.image); imageView.setImageBitmap(bitmap); // preparing input tensor final Tensor inputTensor = TensorImageUtils.bitmapToFloat32Tensor(bitmap, TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB, MemoryFormat.CHANNELS_LAST); // running the model final Tensor outputTensor = module.forward(IValue.from(inputTensor)).toTensor(); // getting tensor content as java array of floats final float[] scores = outputTensor.getDataAsFloatArray(); // searching for the index with maximum score float maxScore = -Float.MAX_VALUE; int maxScoreIdx = -1; for (int i = 0; i < scores.length; i++) { if (scores[i] > maxScore) { maxScore = scores[i]; maxScoreIdx = i; } } System.out.println(maxScoreIdx); String className = ImageNetClasses.IMAGENET_CLASSES[maxScoreIdx]; // showing className on UI TextView textView = findViewById(R.id.text); textView.setText(className); } /** * Copies specified asset to the file in /files app directory and returns this file absolute path. * * @return absolute file path */ public static String assetFilePath(Context context, String assetName) throws IOException { File file = new File(context.getFilesDir(), assetName); if (file.exists() && file.length() > 0) { return file.getAbsolutePath(); } try (InputStream is = context.getAssets().open(assetName)) { try (OutputStream os = new FileOutputStream(file)) { byte[] buffer = new byte[4 * 1024]; int read; while ((read = is.read(buffer)) != -1) { os.write(buffer, 0, read); } os.flush(); } return file.getAbsolutePath(); } } }
然後執行。
到此這篇關於如何將pytorch模型部署到安卓上的方法範例的文章就介紹到這了,更多相關pytorch模型部署到安卓內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45