<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
前幾天微博的一個熱搜主題是**“計算機模擬程式告訴你為什麼現在還沒到出門的時候!!!”**,該視訊用模擬的疫情資料告訴大家“不要隨便出門(宅在家)”對戰勝疫情很重要,生動形象,廣受好評。
所用的程式叫VirusBroadcast,原始碼已經公開,是用Java寫的。鑑於畫圖是R語言的優勢,所以筆者在讀過原始碼後,寫了一個VirusBroadcast程式的R語言版本,暫且叫做RVirusBroadcast。與VirusBroadcast相比,RVirusBroadcast所用的模型和邏輯大體不變,只是在少許細節上做了修改。
(為了防止上面的超連結被過濾掉而打不開,文末也放上了明文連結)
下面兩段視訊是RVirusBroadcast用模擬的資料展示的效果,由於筆者的電腦效能實在一般,所以暫時只模擬了30天的資料。請再次注意下面兩段視訊的資料是模擬生成的,純屬虛構,不具有現實意義,僅供電腦模擬實驗所用。
其他條件不變,當人們隨意移動時,病毒傳播迅速,疫情很難控制
其他條件不變,當人們控制自己的移動時,病毒傳播緩慢,疫情逐漸得到控制
誠如VirusBroadcast的作者所說,現在的模型是一個很簡單的模型,所用的資料也是模擬生成的,還需優化改進。朋友們如果有興趣,可以自行查閱複製下文中的R程式碼,自由修改。
[1] “計算機模擬程式告訴你為什麼現在還沒到出門的時候” 原視訊地址:
https://www.bilibili.com/video/av86478875?spm_id_from=333.788.b_765f64657363.1
###name:RVirusBroadcast ###author:hxj7(hxj5hxj5@126.com) ###version:202002010 ###note:本程式是"VirusBroadcast (in Java)"的R版本 ### VirusBroadcast (in Java) 專案連結: ### https://github.com/KikiLetGo/VirusBroadcast/tree/master/src library(tibble) library(dplyr) ########## 模擬引數 ########## ORIGINAL_COUNT <- 50 # 初始感染數量 BROAD_RATE <- 0.8 # 傳播率 SHADOW_TIME <- 140 # 潛伏時間,14天為140 HOSPITAL_RECEIVE_TIME <- 10 # 醫院收治響應時間 BED_COUNT <- 1000 # 醫院床位 MOVE_WISH_MU <- -0.99 # 流動意向平均值,建議調整範圍:[-0.99,0.99]; # -0.99 人群流動最慢速率,甚至完全控制疫情傳播; # 0.99為人群流動最快速率, 可導致全城感染 CITY_PERSON_SIZE <- 5000 # 城市總人口數量 FATALITY_RATE <- 0.02 # 病死率,根據2月6日資料估算(病死數/確診數)為0.02 SHADOW_TIME_SIGMA <- 25 # 潛伏時間方差 CURED_TIME <- 50 # 治癒時間均值,從入院開始計時 CURED_SIGMA <- 10 # 治癒時間標準差 DIE_TIME <- 300 # 死亡時間均值,30天,從發病(確診)時開始計時 DIE_SIGMA <- 50 # 死亡時間標準差 CITY_WIDTH <- 700 # 城市大小即視窗邊界,限制不允許出城 CITY_HEIGHT <- 800 MAX_TRY <- 300 # 最大模擬次數,300代表30天 ########## 生成人群點,用不同顏色代表不同健康狀態。 ########## # 用正態分佈刻畫人群點的分佈 CITY_CENTERX <- 400 # x軸的mu值 CITY_CENTERY <- 400 PERSON_DIST_X_SIGMA <- 100 # x軸的sigma值 PERSON_DIST_Y_SIGMA <- 100 # 市民狀態應該需要細分,雖然有的狀態暫未納入模擬,但是細分狀態應該保留 STATE_NORMAL <- 0 # 正常人,未感染的健康人 STATE_SUSPECTED <- STATE_NORMAL + 1 # 有暴露感染風險 STATE_SHADOW <- STATE_SUSPECTED + 1 # 潛伏期 STATE_CONFIRMED <- STATE_SHADOW + 1 # 發病且已確診為感染病人 STATE_FREEZE <- STATE_CONFIRMED + 1 # 隔離治療,禁止位移 STATE_DEATH <- STATE_FREEZE + 1 # 病死者 STATE_CURED <- STATE_DEATH + 1 # 治癒數量用於計算治癒出院後歸還床位數量,該狀態是否存續待定 worldtime <- 0 NTRY_PER_DAY <- 10 # 一天模擬幾次 getday <- function(t) (t - 1) %/% NTRY_PER_DAY + 1 # 生成人群資料 format_coord <- function(coord, boundary) { if (coord < 0) return(runif(1, 0, 10)) else if (coord > boundary) return(runif(1, boundary - 10, boundary)) else return(coord) } set.seed(123) people <- tibble( id = 1:CITY_PERSON_SIZE, x = sapply(rnorm(CITY_PERSON_SIZE, CITY_CENTERX, PERSON_DIST_X_SIGMA), format_coord, boundary = CITY_WIDTH), # (x, y) 為人群點座標 y = sapply(rnorm(CITY_PERSON_SIZE, CITY_CENTERY, PERSON_DIST_Y_SIGMA), format_coord, boundary = CITY_HEIGHT), state = STATE_NORMAL, # 健康狀態 infected_time = 0, # 感染時刻 confirmed_time = 0, # 確診時刻 freeze_time = 0, # 隔離時刻 cured_moment = 0, # 痊癒時刻,為0代表不確定 die_moment = 0 # 死亡時刻,為0代表未確定,-1代表不會病死 ) %>% mutate(tx = rnorm(CITY_PERSON_SIZE, x, PERSON_DIST_X_SIGMA), # target x ty = rnorm(CITY_PERSON_SIZE, y, PERSON_DIST_Y_SIGMA), has_target = T, is_arrived = F) # 隨機選擇初始感染者 peop_id <- sample(people$id, ORIGINAL_COUNT) people$state[peop_id] <- STATE_SHADOW people$infected_time[peop_id] <- worldtime people$confirmed_time[peop_id] <- worldtime + max(rnorm(length(peop_id), SHADOW_TIME / 2, SHADOW_TIME_SIGMA), 0) ########## 生成床位點 ########## HOSPITAL_X <- 720 # 第一張床位的x座標 HOSPITAL_Y <- 80 # 第一張床位的y座標 NBED_PER_COLUMN <- 100 # 醫院每一列有多少張床位 BED_ROW_SPACE <- 6 # 一行中床位的間距 BED_COLUMN_SPACE <- 6 # 一列中床位的間距 bed_ncolumn <- ceiling(BED_COUNT / NBED_PER_COLUMN) hosp_beds <- tibble(id = 1, x = 0, y = 0, is_empty = T, state = STATE_NORMAL) %>% slice(-1) if (BED_COUNT > 0) { hosp_beds <- tibble( id = 1:BED_COUNT, x = HOSPITAL_X + rep(((1:bed_ncolumn) - 1) * BED_ROW_SPACE, each = NBED_PER_COLUMN)[1:BED_COUNT], y = HOSPITAL_Y + 10 - BED_COLUMN_SPACE + rep((1:NBED_PER_COLUMN) * BED_COLUMN_SPACE, bed_ncolumn)[1:BED_COUNT], is_empty = T, person_id = 0 # 佔用床位的患者的序號,床位為空時為0 ) } ########## 準備畫圖的資料 ########## npeople_total <- CITY_PERSON_SIZE npeople_shadow <- ORIGINAL_COUNT npeople_confirmed <- npeople_freeze <- npeople_cured <- npeople_death <- 0 nbed_need <- 0 ########## 畫出初始資料 ########## # 設定畫圖引數 person_color <- data.frame( # 不同健康狀態的顏色不同 label = c("健康", "潛伏", "確診", "隔離", "治癒", "死亡"), state = c(STATE_NORMAL, STATE_SHADOW, STATE_CONFIRMED, STATE_FREEZE, STATE_CURED, STATE_DEATH), color = c( "lightgreen", # 健康 "#EEEE00", # 潛伏期 "red", # 確診 "#FFC0CB", # 隔離 "green", # 治癒 "black" # 死亡 ), stringsAsFactors = F ) bed_color <- data.frame( is_empty = c(T, F), color = c("#F8F8FF", "#FFC0CB"), stringsAsFactors = F ) x11(width = 5, height = 7, xpos = 0, ypos = 0, title = "人群變化模擬") window_hist <- dev.cur() x11(width = 7, height = 7, xpos = 460, ypos = 0, title = "疫情傳播模擬") window_scatter <- dev.cur() max_plot_x <- ifelse(BED_COUNT > 0, max(hosp_beds$x), CITY_WIDTH) + 10 # 疫情傳播模擬散點圖 dev.set(window_scatter) plot(x = people$x, y = people$y, cex = .8, pch = 20, xlab = NA, ylab = NA, xlim = c(5, max_plot_x), xaxt = "n", yaxt = "n", bty = "n", main = "疫情傳播模擬", sub = paste0("世界時間第 ", getday(worldtime), " 天"), col = (people %>% left_join(person_color, by = "state") %>% select(color))$color) points(x = hosp_beds$x, y = hosp_beds$y, cex = .8, pch = 20, col = (hosp_beds %>% left_join(bed_color, by = "is_empty") %>% select(color))$color) rect(HOSPITAL_X - BED_ROW_SPACE / 2, HOSPITAL_Y + 10 - BED_COLUMN_SPACE, max(hosp_beds$x) + BED_ROW_SPACE / 2, max(hosp_beds$y + BED_COLUMN_SPACE)) legend(x = 150, y = -30, legend = person_color$label, col = person_color$color, pch = 20, horiz = T, bty = "n", xpd = T) # 人群變化模擬條形圖 dev.set(window_hist) bp_data <- c(npeople_death, npeople_cured, nbed_need, npeople_freeze, npeople_confirmed, npeople_shadow) bp_color <- c("black", "green", "#FFE4E1", "#FFC0CB", "red", "#EEEE00") bp_labels <- c("死亡", "治癒", "不足n床位", "隔離", "累計n確診", "潛伏") bp <- barplot(bp_data, horiz = T, border = NA, col = bp_color, xlim = c(0, CITY_PERSON_SIZE * 1), main = "人群變化模擬", sub = paste0("世界時間第 ", getday(worldtime), " 天")) abline(v = BED_COUNT, col = "gray", lty = 3) abline(v = CITY_PERSON_SIZE, col = "gray", lty = 1) text(x = -350, y = bp, labels = bp_labels, xpd = T) text(x = bp_data + CITY_PERSON_SIZE / 15, y = bp, xpd = T, labels = ifelse(bp_data > 0, bp_data, "")) legend(x = 300, y = -.6, legend = c("總床位數", "城市總人口"), col = "gray", lty = c(3, 1), bty = "n", horiz = T, xpd = T) Sys.sleep(5) # 手動調整視窗大小 ########## 更新人群資料 ########## # 市民流動意願以及移動位置引數174 MOVE_WISH_SIGMA <- 1 MOVE_DIST_SIGMA <- 50 SAFE_DIST <- 2 # 安全距離 worldtime <- worldtime + 1 get_min_dist <- function(person, peop) { # 一個人和一群人之間的最小距離 min(sqrt((person["x"] - peop$x) ^ 2 + (person["y"] - peop$y) ^ 2)) } for (i in 1:MAX_TRY) { # 如果已經隔離或者死亡了,就不需要處理了 # # 處理已經確診的感染者(即患者) peop_id <- people$id[people$state == STATE_CONFIRMED & people$die_moment == 0] if ((npeop <- length(peop_id)) > 0) { people$die_moment[peop_id] <- ifelse( runif(npeop, 0, 1) < FATALITY_RATE, # 用均勻分佈模擬確診患者是否會死亡 people$confirmed_time + max(rnorm(npeop, DIE_TIME, DIE_SIGMA), 0), # 發病後確定死亡時刻 -1 # 逃過了死神的魔爪 ) } # 如果患者已經確診,且(世界時刻-確診時刻)大於醫院響應時間, # 即醫院準備好病床了,可以擡走了 peop_id <- people$id[people$state == STATE_CONFIRMED & worldtime - people$confirmed_time >= HOSPITAL_RECEIVE_TIME] if ((npeop <- length(peop_id)) > 0) { if ((nbed_empty <- sum(hosp_beds$is_empty)) > 0) { # 有空餘床位 nbed_use <- min(npeop, nbed_empty) bed_id <- hosp_beds$id[hosp_beds$is_empty][1:nbed_use] # 更新患者資訊 peop_id2 <- sample(peop_id, nbed_use) # 這裡是隨機選擇,理論上應該按症狀輕重 people$x[peop_id2] <- hosp_beds$x[bed_id] people$y[peop_id2] <- hosp_beds$y[bed_id] people$state[peop_id2] <- STATE_FREEZE people$freeze_time[peop_id2] <- worldtime # 更新床位資訊 hosp_beds$is_empty[bed_id] <- F hosp_beds$person_id[bed_id] <- peop_id2 } } # TODO 需要確定一個變數用於治癒時長。 # 為了說明問題,暫時用一個正態分佈模擬治癒時長並且假定治癒的人不會再被感染 peop_id <- people$id[people$state == STATE_FREEZE & people$cured_moment == 0] if ((npeop <- length(peop_id)) > 0) { # 正態分佈模擬治癒時間 people$cured_moment[peop_id] <- people$freeze_time[peop_id] + max(rnorm(npeop, CURED_TIME, CURED_SIGMA), 0) } peop_id <- people$id[people$state == STATE_FREEZE & people$cured_moment > 0 & worldtime >= people$cured_moment] if ((npeop <- length(peop_id)) > 0) { # 歸還床位 people$state[peop_id] <- STATE_CURED hosp_beds$is_empty[! hosp_beds$is_empty & hosp_beds$person_id %in% peop_id] <- T people$x[peop_id] <- sapply(rnorm(npeop, CITY_CENTERX, PERSON_DIST_X_SIGMA), format_coord, boundary = CITY_WIDTH) # (x, y) 為人群點座標 people$y[peop_id] <- sapply(rnorm(npeop, CITY_CENTERY, PERSON_DIST_Y_SIGMA), format_coord, boundary = CITY_HEIGHT) people$tx[peop_id] <- rnorm(npeop, people$x[peop_id], PERSON_DIST_X_SIGMA) people$ty[peop_id] <- rnorm(npeop, people$y[peop_id], PERSON_DIST_Y_SIGMA) people$has_target[peop_id] <- T people$is_arrived[peop_id] <- F } # 處理病死者 peop_id <- people$id[people$state %in% c(STATE_CONFIRMED, STATE_FREEZE) & worldtime >= people$die_moment & people$die_moment > 0] if (length(peop_id) > 0) { # 歸還床位 people$state[peop_id] <- STATE_DEATH hosp_beds$is_empty[! hosp_beds$is_empty & hosp_beds$person_id %in% peop_id] <- T } # 處理髮病的潛伏期感染者 peop_id <- people$id[people$state == STATE_SHADOW & worldtime >= people$confirmed_time] if ((npeop <- length(peop_id)) > 0) { people$state[peop_id] <- STATE_CONFIRMED # 潛伏者發病 } # 處理未隔離者的移動問題 peop_id <- people$id[ ! people$state %in% c(STATE_FREEZE, STATE_DEATH) & rnorm(CITY_PERSON_SIZE, MOVE_WISH_MU, MOVE_WISH_SIGMA) > 0] # 流動意願 if ((npeop <- length(peop_id)) > 0) { # 正態分佈模擬要移動到的目標點 pp_id <- peop_id[! people$has_target[peop_id] | people$is_arrived[peop_id]] if ((npp <- length(pp_id)) > 0) { people$tx[pp_id] <- rnorm(npp, people$tx[pp_id], PERSON_DIST_X_SIGMA) people$ty[pp_id] <- rnorm(npp, people$ty[pp_id], PERSON_DIST_Y_SIGMA) people$has_target[pp_id] <- T people$is_arrived[pp_id] <- F } # 計算運動位移262 dx <- people$tx[peop_id] - people$x[peop_id] dy <- people$ty[peop_id] - people$y[peop_id] move_dist <- sqrt(dx ^ 2 + dy ^ 2) people$is_arrived[peop_id][move_dist < 1] <- T # 判斷是否到達目標點266 pp_id <- peop_id[move_dist >= 1] if ((npp <- length(pp_id)) > 0) { udx <- sign(dx[move_dist >= 1]) # x軸運動方向269 udy <- sign(dy[move_dist >= 1]) # 是否到了邊界 pid_x <- (1:npp)[people$x[pp_id] + udx < 0 | people$x[pp_id] + udx > CITY_WIDTH] pid_y <- (1:npp)[people$y[pp_id] + udy < 0 | people$y[pp_id] + udy > CITY_HEIGHT] # 更新到了邊界的點的資訊 people$x[pp_id[pid_x]] <- people$x[pp_id[pid_x]] - udx[pid_x] people$y[pp_id[pid_y]] <- people$y[pp_id[pid_y]] - udy[pid_y] people$has_target[unique(c(pp_id[pid_x], pp_id[pid_y]))] <- F # 更新沒有到邊界的點的資訊278 people$x[pp_id[! pp_id %in% pid_x]] <- people$x[pp_id[! pp_id %in% pid_x]] + udx[! pp_id %in% pid_x] people$y[pp_id[! pp_id %in% pid_y]] <- people$y[pp_id[! pp_id %in% pid_y]] + udy[! pp_id %in% pid_y] } } # 處理健康人被感染的問題 # 通過一個隨機幸運值和安全距離決定感染其他人286 normal_peop_id <- people$id[people$state == STATE_NORMAL] other_peop_id <- people$id[! people$state %in% c(STATE_NORMAL, STATE_CURED)] if (length(normal_peop_id) > 0) { normal_other_dist <- apply(people[normal_peop_id, ], 1, get_min_dist, peop = people[other_peop_id, ]) normal2other_id <- normal_peop_id[normal_other_dist < SAFE_DIST & runif(length(normal_peop_id), 0, 1) < BROAD_RATE] if ((n2other <- length(normal2other_id)) > 0) { people$state[normal2other_id] <- STATE_SHADOW people$infected_time[normal2other_id] <- worldtime people$confirmed_time[normal2other_id] <- worldtime + max(rnorm(n2other, SHADOW_TIME / 2, SHADOW_TIME_SIGMA), 0) } } # 畫出更新後的資料 npeople_confirmed <- sum(people$state >= STATE_CONFIRMED) npeople_death <- sum(people$state == STATE_DEATH) npeople_freeze <- sum(people$state == STATE_FREEZE) npeople_shadow <- sum(people$state == STATE_SHADOW) npeople_cured <- sum(people$state == STATE_CURED) nbed_need <- npeople_confirmed - npeople_cured - npeople_death - BED_COUNT nbed_need <- ifelse(nbed_need > 0, nbed_need, 0) # 不足病床數 # 疫情傳播模擬散點圖 dev.set(window_scatter) plot(x = people$x, y = people$y, cex = .8, pch = 20, xlab = NA, ylab = NA, xlim = c(5, max_plot_x), xaxt = "n", yaxt = "n", bty = "n", main = "疫情傳播模擬", sub = paste0("世界時間第 ", getday(worldtime), " 天"), col = (people %>% left_join(person_color, by = "state") %>% select(color))$color) points(x = hosp_beds$x, y = hosp_beds$y, cex = .8, pch = 20, col = (hosp_beds %>% left_join(bed_color, by = "is_empty") %>% select(color))$color) rect(HOSPITAL_X - BED_ROW_SPACE / 2, HOSPITAL_Y + 10 - BED_COLUMN_SPACE, max(hosp_beds$x) + BED_ROW_SPACE / 2, max(hosp_beds$y + BED_COLUMN_SPACE)) legend(x = 150, y = -30, legend = person_color$label, col = person_color$color, pch = 20, horiz = T, bty = "n", xpd = T) # 人群變化模擬條形圖 dev.set(window_hist) bp_data <- c(npeople_death, npeople_cured, nbed_need, npeople_freeze, npeople_confirmed, npeople_shadow) bp <- barplot(bp_data, horiz = T, border = NA, col = bp_color, xlim = c(0, CITY_PERSON_SIZE * 1), main = "人群變化模擬", sub = paste0("世界時間第 ", getday(worldtime), " 天")) abline(v = BED_COUNT, col = "gray", lty = 3) abline(v = CITY_PERSON_SIZE, col = "gray", lty = 1) text(x = -350, y = bp, labels = bp_labels, xpd = T) text(x = bp_data + CITY_PERSON_SIZE / 15, y = bp, xpd = T, labels = ifelse(bp_data > 0, bp_data, "")) legend(x = 300, y = -.6, legend = c("總床位數", "城市總人口"), col = "gray", lty = c(3, 1), bty = "n", horiz = T, xpd = T) # 更新世界時間 worldtime <- worldtime + 1 }
以上就是R語言模擬疫情傳播圖告訴你為什麼還沒到出門的時候的詳細內容,更多關於R語言模擬疫情傳播圖的資料請關注it145.com其它相關文章!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45