首頁 > 軟體

使用python把Excel中的資料在頁面中視覺化

2022-03-28 13:00:28

一. 需求

最近我們資料視覺化的老師讓我們把廣州歷史房價中的房價資料視覺化,然後給我們發了廣州歷史房價.xls,然後看了一下資料確實有點小多,反正複製貼上是有點費勁的,所以就想借用python幫我把資料修改成我一鍵複製的模樣。

二. 安裝xlrd模組

pip install xlrd

通常pip都是帶有的,我們在開發工具中import xlrd就可以啦。

下面是實現切割一年每個月份的方法

import xlrd
path = r'E:資料分析7廣州歷史房價.xls'
#sheetName是你這個excel檔案中的表,如Sheet1(注意大小寫問題)
sheetName = 'Sheet1'
data = xlrd.open_workbook(path)
table = data.sheet_by_name(sheetName)
 
# 行數
rowAmount = table.nrows
# 列數
colAmount = table.ncols
# 顯示第n列中所有格中的內容
datas=[]
for rowIndex in range(1,rowAmount):
    datas.append(table.cell_value(rowIndex, 1))
 
datas.reverse()
index1=0
index2=12
time=2009
while index2<len(datas):
    print(str(time)+"年")
    time=time+1
    # print(str(index1)+"   "+str(index2))
    print(datas[index1:index2])
    index1=index2
    index2=index2+12
print(str(time)+"年")
print(datas[index1:index2-2])

得到的資料: 

三.  用echart在html中表現

在下面連結中找到要表現的樣式:(記得加上echart.js)

Examples - Apache ECharts

ECharts, a powerful, interactive charting and visualization library for browser

https://echarts.apache.org/examples/zh/index.html

<!DOCTYPE html>
<html>
	<head>
		<meta charset="utf-8">
		<title>廣州歷史房價</title>
		<script src="echarts.js"></script>
	</head>
	<script>
	window.onload = function(){
		// 在<head>中寫浮現視窗
		var a = echarts.init(document.getElementById("main"));
		var b =option = {
  title: {
    text: '廣州歷史房價',
	
  },
  tooltip: {
    trigger: 'axis'
  },
  legend: {
    data: ['2009年', '2010年', '2011年', '2012年', '2013年','2014年', '2015年', '2016年', '2017年', '2018年']
  },
  grid: {
    left: '3%',
    right: '4%',
    bottom: '3%',
    containLabel: true
  },
  toolbox: {
    feature: {
      saveAsImage: {}
    }
  },
  xAxis: {
    type: 'category',
    boundaryGap: false,
    data: ['一月', '二月', '三月', '四月', '五月', '六月', '七月','八月', '九月', '十月', '十一月','十二月']
  },
  yAxis: {
    type: 'value'
  },
  series: [
    {
      name: '2009年',
      type: 'line',
      stack: 'Total',
      data: [6991.0, 6963.0, 7305.0, 8051.0, 8191.0, 8168.0, 8431.0, 8620.0, 8927.0, 9113.0, 9318.0, 9718.0]
    },
    {
      name: '2010年',
      type: 'line',
      stack: 'Total',
      data: [9873.0, 10000.0, 10000.0, 10351.0, 10610.0, 10787.0, 10622.0, 10878.0, 11505.0, 12062.0, 12413.0, 12944.0]
    },
    {
      name: '2011年',
      type: 'line',
      stack: 'Total',
      data: [13535.0, 14114.0, 14680.0, 14998.0, 14977.0, 14938.0, 14855.0, 14654.0, 14547.0, 14521.0, 14677.0, 14762.0]
    },
    {
      name: '2012年',
      type: 'line',
      stack: 'Total',
      data: [14993.0, 15194.0, 15215.0, 15203.0, 15148.0, 15152.0, 15246.0, 15467.0, 15754.0, 15886.0, 16207.0, 16555.0]
    },
    {
      name: '2013年',
      type: 'line',
      stack: 'Total',
      data: [17003.0, 17423.0, 17665.0, 17651.0, 17304.0, 17515.0, 17759.0, 18293.0, 19011.0, 19445.0, 19589.0, 19208.0]
    },
    {
      name: '2014年',
      type: 'line',
      stack: 'Total',
      data: [18893.0, 18977.0, 19460.0, 19040.0, 18757.0, 18440.0, 17764.0, 17450.0, 17312.0, 17338.0, 18081.0, 18564.0]
    },    
	{
      name: '2015年',
      type: 'line',
      stack: 'Total',
      data: [18792.0, 18851.0, 19024.0, 19417.0, 19562.0, 19902.0, 20014.0, 19997.0, 19988.0, 19921.0, 19996.0, 20016.0]
    },
	{
	  name: '2016年',
	  type: 'line',
	  stack: 'Total',
	  data: [20623.0, 20643.0, 20811.0, 21133.0, 21107.0, 21144.0, 21264.0, 21553.0, 21720.0, 22242.0, 22590.0, 22926.0]
	},
	{
	  name: '2017年',
	  type: 'line',
	  stack: 'Total',
	  data: [23744.0, 24427.0, 25131.0, 25369.0, 26061.0, 27329.0, 28196.0, 28508.0, 28814.0, 28254.0, 28009.0, 28578.0]
	},
	{
	  name: '2018年',
	  type: 'line',
	  stack: 'Total',
	  data: [28602.0, 29683.0, 30413.0, 31044.0, 31472.0, 32021.0, 32670.0, 33289.0, 33455.0, 33197.0]
	},
  ]
};
 
 
					a.setOption(b);
				}
	</script>
	<body> <!-- 在<body>處完善視窗尺寸 -->
		<div id="main" style="width: 1100px;height: 800px;"></div>
	</body>
</html>

四.  效果 

總結

到此這篇關於使用python把Excel中資料在頁面中視覺化的文章就介紹到這了,更多相關python Excel資料視覺化內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com