<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
內容如下:
一行儲存一個句子;將稀有單詞替換成特殊字元 < unk > ;將具體的數位替換 成“N”
we 're talking about years ago before anyone heard of asbestos having any questionable properties there is no asbestos in our products now neither <unk> nor the researchers who studied the workers were aware of any research on smokers of the kent cigarettes we have no useful information on whether users are at risk said james a. <unk> of boston 's <unk> cancer institute dr. <unk> led a team of researchers from the national cancer institute and the medical schools of harvard university and boston university
使用PTB資料集:
由下面這句話,可知用PTB資料集時候,是把所有句子首尾連線了。
words = open(file_path).read().replace('n', '<eos>').strip().split()
ptb.py起到了下載PTB資料集,把資料集存到資料夾某個位置,然後對資料集進行提取的功能,提取出corpus, word_to_id, id_to_word。
import sys import os sys.path.append('..') try: import urllib.request except ImportError: raise ImportError('Use Python3!') import pickle import numpy as np url_base = 'https://raw.githubusercontent.com/tomsercu/lstm/master/data/' key_file = { 'train':'ptb.train.txt', 'test':'ptb.test.txt', 'valid':'ptb.valid.txt' } save_file = { 'train':'ptb.train.npy', 'test':'ptb.test.npy', 'valid':'ptb.valid.npy' } vocab_file = 'ptb.vocab.pkl' dataset_dir = os.path.dirname(os.path.abspath(__file__)) def _download(file_name): file_path = dataset_dir + '/' + file_name if os.path.exists(file_path): return print('Downloading ' + file_name + ' ... ') try: urllib.request.urlretrieve(url_base + file_name, file_path) except urllib.error.URLError: import ssl ssl._create_default_https_context = ssl._create_unverified_context urllib.request.urlretrieve(url_base + file_name, file_path) print('Done') def load_vocab(): vocab_path = dataset_dir + '/' + vocab_file if os.path.exists(vocab_path): with open(vocab_path, 'rb') as f: word_to_id, id_to_word = pickle.load(f) return word_to_id, id_to_word word_to_id = {} id_to_word = {} data_type = 'train' file_name = key_file[data_type] file_path = dataset_dir + '/' + file_name _download(file_name) words = open(file_path).read().replace('n', '<eos>').strip().split() for i, word in enumerate(words): if word not in word_to_id: tmp_id = len(word_to_id) word_to_id[word] = tmp_id id_to_word[tmp_id] = word with open(vocab_path, 'wb') as f: pickle.dump((word_to_id, id_to_word), f) return word_to_id, id_to_word def load_data(data_type='train'): ''' :param data_type: 資料的種類:'train' or 'test' or 'valid (val)' :return: ''' if data_type == 'val': data_type = 'valid' save_path = dataset_dir + '/' + save_file[data_type] word_to_id, id_to_word = load_vocab() if os.path.exists(save_path): corpus = np.load(save_path) return corpus, word_to_id, id_to_word file_name = key_file[data_type] file_path = dataset_dir + '/' + file_name _download(file_name) words = open(file_path).read().replace('n', '<eos>').strip().split() corpus = np.array([word_to_id[w] for w in words]) np.save(save_path, corpus) return corpus, word_to_id, id_to_word if __name__ == '__main__': for data_type in ('train', 'val', 'test'): load_data(data_type)
corpus儲存了單詞ID列表,id_to_word 是將單詞ID轉化為單詞的字典,word_to_id 是將單詞轉化為單詞ID的字典。
使用ptb.load_data()載入資料。裡面的引數 ‘train’、‘test’、‘valid’ 分別對應訓練用資料、測試用資料、驗證用資料。
import sys sys.path.append('..') from dataset import ptb corpus, word_to_id, id_to_word = ptb.load_data('train') print('corpus size:', len(corpus)) print('corpus[:30]:', corpus[:30]) print() print('id_to_word[0]:', id_to_word[0]) print('id_to_word[1]:', id_to_word[1]) print('id_to_word[2]:', id_to_word[2]) print() print("word_to_id['car']:", word_to_id['car']) print("word_to_id['happy']:", word_to_id['happy']) print("word_to_id['lexus']:", word_to_id['lexus'])
結果:
corpus size: 929589 corpus[:30]: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29] id_to_word[0]: aer id_to_word[1]: banknote id_to_word[2]: berlitz word_to_id['car']: 3856 word_to_id['happy']: 4428 word_to_id['lexus']: 7426 Process finished with exit code 0
其實和不用PTB資料集的區別就在於這句話。
corpus, word_to_id, id_to_word = ptb.load_data('train')
下面這句話起降維的效果
word_vecs = U[:, :wordvec_size]
整個程式碼其實耗時最大的是在下面這個函數上:
W = ppmi(C, verbose=True)
完整程式碼:
import sys sys.path.append('..') import numpy as np from common.util import most_similar, create_co_matrix, ppmi from dataset import ptb window_size = 2 wordvec_size = 100 corpus, word_to_id, id_to_word = ptb.load_data('train') vocab_size = len(word_to_id) print('counting co-occurrence ...') C = create_co_matrix(corpus, vocab_size, window_size) print('calculating PPMI ...') W = ppmi(C, verbose=True) print('calculating SVD ...') #try: # truncated SVD (fast!) print("ok") from sklearn.utils.extmath import randomized_svd U, S, V = randomized_svd(W, n_components=wordvec_size, n_iter=5, random_state=None) #except ImportError: # SVD (slow) # U, S, V = np.linalg.svd(W) word_vecs = U[:, :wordvec_size] querys = ['you', 'year', 'car', 'toyota'] for query in querys: most_similar(query, word_to_id, id_to_word, word_vecs, top=5)
下面這個是用普通的np.linalg.svd(W)做出的結果。
[query] you i: 0.7016294002532959 we: 0.6388039588928223 anybody: 0.5868048667907715 do: 0.5612815618515015 'll: 0.512611985206604 [query] year month: 0.6957005262374878 quarter: 0.691483736038208 earlier: 0.6661213636398315 last: 0.6327787041664124 third: 0.6230476498603821 [query] car luxury: 0.6767407655715942 auto: 0.6339930295944214 vehicle: 0.5972712635993958 cars: 0.5888376235961914 truck: 0.5693157315254211 [query] toyota motor: 0.7481387853622437 nissan: 0.7147319316864014 motors: 0.6946366429328918 lexus: 0.6553674340248108 honda: 0.6343469619750977
下面結果,是用了sklearn模組裡面的randomized_svd方法,使用了亂數的 Truncated SVD,僅對奇異值較大的部分進行計算,計算速度比常規的 SVD 快。
calculating SVD ... ok [query] you i: 0.6678948998451233 we: 0.6213737726211548 something: 0.560122013092041 do: 0.5594725608825684 someone: 0.5490139126777649 [query] year month: 0.6444296836853027 quarter: 0.6192560791969299 next: 0.6152222156524658 fiscal: 0.5712860226631165 earlier: 0.5641934871673584 [query] car luxury: 0.6612467765808105 auto: 0.6166062355041504 corsica: 0.5270425081253052 cars: 0.5142025947570801 truck: 0.5030257105827332 [query] toyota motor: 0.7747215628623962 motors: 0.6871038675308228 lexus: 0.6786072850227356 nissan: 0.6618651151657104 mazda: 0.6237337589263916 Process finished with exit code 0
以上就是nlp計數法應用於PTB資料集範例詳解的詳細內容,更多關於nlp計數法應用於PTB資料集的資料請關注it145.com其它相關文章!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45