<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
分別使用了openvino,opencv_cuda進行加速。
關於演示視訊及程式碼講解請檢視:
https://www.bilibili.com/video/BV13S4y1c7ea/
https://www.bilibili.com/video/BV1Dq4y1x7r6/
https://www.bilibili.com/video/BV1kT4y1S7hz/
mainwindow.h
#ifndef MAINWINDOW_H #define MAINWINDOW_H #include <QFileDialog> #include <QFile> #include <opencv2/opencv.hpp> #include <opencv2/dnn.hpp> #include <QMainWindow> #include <QTimer> #include <QImage> #include <QPixmap> #include <QDateTime> #include <QMutex> #include <QMutexLocker> #include <QMimeDatabase> #include <iostream> #include <yolov5.h> #include <chrono> #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\opencv_core453.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\opencv_imgcodecs453.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\opencv_imgproc453.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\opencv_videoio453.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\opencv_objdetect453.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\opencv\lib\opencv_dnn453.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\deployment_tools\inference_engine\lib\intel64\Release\inference_engine.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\deployment_tools\inference_engine\lib\intel64\Release\inference_engine_c_api.lib") #pragma comment(lib,"C:\Program Files (x86)\Intel\openvino_2021\deployment_tools\inference_engine\lib\intel64\Release\inference_engine_transformations.lib") //LIBS+= -L "C:Program Files (x86)Intelopenvino_2021opencvlib*.lib" //LIBS+= -L "C:Program Files (x86)Intelopenvino_2021deployment_toolsinference_enginelibintel64Release*.lib" //#ifdef QT_NO_DEBUG //#pragma comment(lib,"C:Program Files (x86)Intelopenvino_2021opencvlibopencv_core452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgproc452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_video452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_videoio452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_objdetect452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_shape452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn452.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn_objdetect452.lib") //#else //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_core452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgproc452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_imgcodecs452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_video452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_videoio452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_objdetect452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_shape452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn452d.lib") //#pragma comment(lib,"E:/opencv_build/install/x64/vc16/lib/opencv_dnn_objdetect452d.lib") //#endif //#ifdef QT_NO_DEBUG //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_core452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_imgcodecs452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_imgproc452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_imgcodecs452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_video452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_videoio452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_objdetect452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_shape452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_dnn452.lib") //#pragma comment(lib,"E:/opencv452_cuda/install/x64/vc16/lib/opencv_dnn_objdetect452.lib") //#endif QPixmap Mat2Image(cv::Mat src); QT_BEGIN_NAMESPACE namespace Ui { class MainWindow; } QT_END_NAMESPACE class MainWindow : public QMainWindow { Q_OBJECT public: MainWindow(QWidget *parent = nullptr); void Init(); ~MainWindow(); private slots: void readFrame(); //自定義訊號處理常式 void on_openfile_clicked(); void on_loadfile_clicked(); void on_startdetect_clicked(); void on_stopdetect_clicked(); void on_comboBox_activated(const QString &arg1); private: Ui::MainWindow *ui; QTimer *timer; cv::VideoCapture *capture; YOLOV5 *yolov5; NetConfig conf; NetConfig *yolo_nets; std::vector<cv::Rect> bboxes; int IsDetect_ok = 0; }; #endif // MAINWINDOW_H
mainwindow.cpp
#include "mainwindow.h" #include "ui_mainwindow.h" MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent) , ui(new Ui::MainWindow) { ui->setupUi(this); setWindowTitle(QStringLiteral("YoloV5目標檢測軟體")); timer = new QTimer(this); timer->setInterval(33); connect(timer,SIGNAL(timeout()),this,SLOT(readFrame())); ui->startdetect->setEnabled(false); ui->stopdetect->setEnabled(false); Init(); } MainWindow::~MainWindow() { capture->release(); delete capture; delete [] yolo_nets; delete yolov5; delete ui; } void MainWindow::Init() { capture = new cv::VideoCapture(); yolo_nets = new NetConfig[4]{ {0.5, 0.5, 0.5, "yolov5s"}, {0.6, 0.6, 0.6, "yolov5m"}, {0.65, 0.65, 0.65, "yolov5l"}, {0.75, 0.75, 0.75, "yolov5x"} }; conf = yolo_nets[0]; yolov5 = new YOLOV5(); yolov5->Initialization(conf); ui->textEditlog->append(QStringLiteral("預設模型類別:yolov5s args: %1 %2 %3") .arg(conf.nmsThreshold) .arg(conf.objThreshold) .arg(conf.confThreshold)); } void MainWindow::readFrame() { cv::Mat frame; capture->read(frame); if (frame.empty()) return; auto start = std::chrono::steady_clock::now(); yolov5->detect(frame); auto end = std::chrono::steady_clock::now(); std::chrono::duration<double, std::milli> elapsed = end - start; ui->textEditlog->append(QString("cost_time: %1 ms").arg(elapsed.count())); // double t0 = static_cast<double>(cv::getTickCount()); // yolov5->detect(frame); // double t1 = static_cast<double>(cv::getTickCount()); // ui->textEditlog->append(QStringLiteral("cost_time: %1 ").arg((t1 - t0) / cv::getTickFrequency())); cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB); QImage rawImage = QImage((uchar*)(frame.data),frame.cols,frame.rows,frame.step,QImage::Format_RGB888); ui->label->setPixmap(QPixmap::fromImage(rawImage)); } void MainWindow::on_openfile_clicked() { QString filename = QFileDialog::getOpenFileName(this,QStringLiteral("開啟檔案"),".","*.mp4 *.avi;;*.png *.jpg *.jpeg *.bmp"); if(!QFile::exists(filename)){ return; } ui->statusbar->showMessage(filename); QMimeDatabase db; QMimeType mime = db.mimeTypeForFile(filename); if (mime.name().startsWith("image/")) { cv::Mat src = cv::imread(filename.toLatin1().data()); if(src.empty()){ ui->statusbar->showMessage("影象不存在!"); return; } cv::Mat temp; if(src.channels()==4) cv::cvtColor(src,temp,cv::COLOR_BGRA2RGB); else if (src.channels()==3) cv::cvtColor(src,temp,cv::COLOR_BGR2RGB); else cv::cvtColor(src,temp,cv::COLOR_GRAY2RGB); auto start = std::chrono::steady_clock::now(); yolov5->detect(temp); auto end = std::chrono::steady_clock::now(); std::chrono::duration<double, std::milli> elapsed = end - start; ui->textEditlog->append(QString("cost_time: %1 ms").arg(elapsed.count())); QImage img = QImage((uchar*)(temp.data),temp.cols,temp.rows,temp.step,QImage::Format_RGB888); ui->label->setPixmap(QPixmap::fromImage(img)); ui->label->resize(ui->label->pixmap()->size()); filename.clear(); }else if (mime.name().startsWith("video/")) { capture->open(filename.toLatin1().data()); if (!capture->isOpened()){ ui->textEditlog->append("fail to open MP4!"); return; } IsDetect_ok +=1; if (IsDetect_ok ==2) ui->startdetect->setEnabled(true); ui->textEditlog->append(QString::fromUtf8("Open video: %1 succesfully!").arg(filename)); //獲取整個幀數QStringLiteral long totalFrame = capture->get(cv::CAP_PROP_FRAME_COUNT); ui->textEditlog->append(QStringLiteral("整個視訊共 %1 幀").arg(totalFrame)); ui->label->resize(QSize(capture->get(cv::CAP_PROP_FRAME_WIDTH), capture->get(cv::CAP_PROP_FRAME_HEIGHT))); //設定開始幀() long frameToStart = 0; capture->set(cv::CAP_PROP_POS_FRAMES, frameToStart); ui->textEditlog->append(QStringLiteral("從第 %1 幀開始讀").arg(frameToStart)); //獲取影格率 double rate = capture->get(cv::CAP_PROP_FPS); ui->textEditlog->append(QStringLiteral("影格率為: %1 ").arg(rate)); } } void MainWindow::on_loadfile_clicked() { QString onnxFile = QFileDialog::getOpenFileName(this,QStringLiteral("選擇模型"),".","*.onnx"); if(!QFile::exists(onnxFile)){ return; } ui->statusbar->showMessage(onnxFile); if (!yolov5->loadModel(onnxFile.toLatin1().data())){ ui->textEditlog->append(QStringLiteral("載入模型失敗!")); return; } IsDetect_ok +=1; ui->textEditlog->append(QString::fromUtf8("Open onnxFile: %1 succesfully!").arg(onnxFile)); if (IsDetect_ok ==2) ui->startdetect->setEnabled(true); } void MainWindow::on_startdetect_clicked() { timer->start(); ui->startdetect->setEnabled(false); ui->stopdetect->setEnabled(true); ui->openfile->setEnabled(false); ui->loadfile->setEnabled(false); ui->comboBox->setEnabled(false); ui->textEditlog->append(QStringLiteral("================n" " 開始檢測n" "================n")); } void MainWindow::on_stopdetect_clicked() { ui->startdetect->setEnabled(true); ui->stopdetect->setEnabled(false); ui->openfile->setEnabled(true); ui->loadfile->setEnabled(true); ui->comboBox->setEnabled(true); timer->stop(); ui->textEditlog->append(QStringLiteral("================n" " 停止檢測n" "================n")); } void MainWindow::on_comboBox_activated(const QString &arg1) { if (arg1.contains("s")){ conf = yolo_nets[0]; }else if (arg1.contains("m")) { conf = yolo_nets[1]; }else if (arg1.contains("l")) { conf = yolo_nets[2]; }else if (arg1.contains("x")) { conf = yolo_nets[3];} yolov5->Initialization(conf); ui->textEditlog->append(QStringLiteral("使用模型類別:%1 args: %2 %3 %4") .arg(arg1) .arg(conf.nmsThreshold) .arg(conf.objThreshold) .arg(conf.confThreshold)); }
yolov5類
yolov5.h
#ifndef YOLOV5_H #define YOLOV5_H #include <opencv2/opencv.hpp> #include <opencv2/dnn.hpp> #include <fstream> #include <sstream> #include <iostream> #include <exception> #include <QMessageBox> struct NetConfig { float confThreshold; // class Confidence threshold float nmsThreshold; // Non-maximum suppression threshold float objThreshold; //Object Confidence threshold std::string netname; }; class YOLOV5 { public: YOLOV5(){} void Initialization(NetConfig conf); bool loadModel(const char* onnxfile); void detect(cv::Mat& frame); private: const float anchors[3][6] = {{10.0, 13.0, 16.0, 30.0, 33.0, 23.0}, {30.0, 61.0, 62.0, 45.0, 59.0, 119.0},{116.0, 90.0, 156.0, 198.0, 373.0, 326.0}}; const float stride[3] = { 8.0, 16.0, 32.0 }; std::string classes[80] = {"person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"}; const int inpWidth = 640; const int inpHeight = 640; float confThreshold; float nmsThreshold; float objThreshold; cv::Mat blob; std::vector<cv::Mat> outs; std::vector<int> classIds; std::vector<float> confidences; std::vector<cv::Rect> boxes; cv::dnn::Net net; void drawPred(int classId, float conf, int left, int top, int right, int bottom, cv::Mat& frame); void sigmoid(cv::Mat* out, int length); }; static inline float sigmoid_x(float x) { return static_cast<float>(1.f / (1.f + exp(-x))); } #endif // YOLOV5_H
yolov5.cpp
#include "yolov5.h" using namespace std; using namespace cv; void YOLOV5::Initialization(NetConfig conf) { this->confThreshold = conf.confThreshold; this->nmsThreshold = conf.nmsThreshold; this->objThreshold = conf.objThreshold; classIds.reserve(20); confidences.reserve(20); boxes.reserve(20); outs.reserve(3); } bool YOLOV5::loadModel(const char *onnxfile) { try { this->net = cv::dnn::readNetFromONNX(onnxfile); return true; } catch (exception& e) { QMessageBox::critical(NULL,"Error",QStringLiteral("模型載入出錯,請檢查重試!n %1").arg(e.what()),QMessageBox::Yes,QMessageBox::Yes); return false; } this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_INFERENCE_ENGINE); this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU); // this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); // this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); // try { // this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_CUDA); // this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CUDA); // } catch (exception& e2) { // this->net.setPreferableBackend(cv::dnn::DNN_BACKEND_DEFAULT); // this->net.setPreferableTarget(cv::dnn::DNN_TARGET_CPU); // QMessageBox::warning(NULL,"warning",QStringLiteral("正在使用CPU推理!n %1").arg(e2.what()),QMessageBox::Yes,QMessageBox::Yes); // return false; // } } void YOLOV5::detect(cv::Mat &frame) { cv::dnn::blobFromImage(frame, blob, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false); this->net.setInput(blob); this->net.forward(outs, this->net.getUnconnectedOutLayersNames()); /generate proposals classIds.clear(); confidences.clear(); boxes.clear(); float ratioh = (float)frame.rows / this->inpHeight, ratiow = (float)frame.cols / this->inpWidth; int n = 0, q = 0, i = 0, j = 0, nout = 8 + 5, c = 0; for (n = 0; n < 3; n++) ///尺度 { int num_grid_x = (int)(this->inpWidth / this->stride[n]); int num_grid_y = (int)(this->inpHeight / this->stride[n]); int area = num_grid_x * num_grid_y; this->sigmoid(&outs[n], 3 * nout * area); for (q = 0; q < 3; q++) ///anchor數 { const float anchor_w = this->anchors[n][q * 2]; const float anchor_h = this->anchors[n][q * 2 + 1]; float* pdata = (float*)outs[n].data + q * nout * area; for (i = 0; i < num_grid_y; i++) { for (j = 0; j < num_grid_x; j++) { float box_score = pdata[4 * area + i * num_grid_x + j]; if (box_score > this->objThreshold) { float max_class_socre = 0, class_socre = 0; int max_class_id = 0; for (c = 0; c < 80; c++) get max socre { class_socre = pdata[(c + 5) * area + i * num_grid_x + j]; if (class_socre > max_class_socre) { max_class_socre = class_socre; max_class_id = c; } } if (max_class_socre > this->confThreshold) { float cx = (pdata[i * num_grid_x + j] * 2.f - 0.5f + j) * this->stride[n]; ///cx float cy = (pdata[area + i * num_grid_x + j] * 2.f - 0.5f + i) * this->stride[n]; ///cy float w = powf(pdata[2 * area + i * num_grid_x + j] * 2.f, 2.f) * anchor_w; ///w float h = powf(pdata[3 * area + i * num_grid_x + j] * 2.f, 2.f) * anchor_h; ///h int left = (cx - 0.5*w)*ratiow; int top = (cy - 0.5*h)*ratioh; ///座標還原到原圖上 classIds.push_back(max_class_id); confidences.push_back(max_class_socre); boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh))); } } } } } } // Perform non maximum suppression to eliminate redundant overlapping boxes with // lower confidences vector<int> indices; cv::dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices); for (size_t i = 0; i < indices.size(); ++i) { int idx = indices[i]; Rect box = boxes[idx]; this->drawPred(classIds[idx], confidences[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } } void YOLOV5::drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat &frame) { rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 3); string label = format("%.2f", conf); label = this->classes[classId] + ":" + label; int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); top = max(top, labelSize.height); putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1); } void YOLOV5::sigmoid(Mat *out, int length) { float* pdata = (float*)(out->data); int i = 0; for (i = 0; i < length; i++) { pdata[i] = 1.0 / (1 + expf(-pdata[i])); } }
到此這篇關於Qt結合OpenCV部署yolov5的實現的文章就介紹到這了,更多相關Qt OpenCV部署yolov5內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45