首頁 > 軟體

OpenCV實現影象去噪演演算法的步驟詳解

2022-06-21 18:01:37

一、函數參考

1、Primal-dual演演算法

Primal-dual algorithm是一種用於解決特殊型別的變分問題的演演算法(即找到一個函數來最小化一些泛函)。

特別是由於影象去噪可以看作是變分問題,因此可以使用原始對偶演演算法進行去噪,這正是該演演算法所實現的。

cv::denoise_TVL1 (const std::vector< Mat > &observations, Mat &result, double lambda=1.0, int niters=30)
observations該陣列應包含要恢復的影象的一個或多個噪聲版本。
result這裡將儲存去噪影象。 無需預先分配儲存空間,必要時會自動分配。
lambda對應於上述公式中的 λ。 當它被放大時,平滑(模糊)的影象比細節(但可能有更多噪點)的影象更受歡迎。 粗略地說,隨著它變小,結果會更加模糊,但會去除更多的異常值。
niters演演算法將執行的迭代次數。 當然,越多的迭代越好,但是這個說法很難量化細化,所以就使用預設值,如果結果不好就增加它。

2、非區域性均值去噪演演算法

使用非區域性均值去噪演演算法,該方法基於一個簡單的原理:將畫素的顏色替換為相似畫素顏色的平均值。 但是與給定畫素最相似的畫素根本沒有理由靠近。 因此,掃描影象的大部分以尋找真正類似於想要去噪的畫素的所有畫素是合法的。執行影象去噪,並進行了多種計算優化。 噪聲預期為高斯白噪聲。

cv::cuda::fastNlMeansDenoising (InputArray src, OutputArray dst, float h, int search_window=21, int block_size=7, Stream &stream=Stream::Null())
cv::fastNlMeansDenoising (InputArray src, OutputArray dst, float h=3, int templateWindowSize=7, int searchWindowSize=21)
cv::fastNlMeansDenoising (InputArray src, OutputArray dst, const std::vector< float > &h, int templateWindowSize=7, int searchWindowSize=21, int

針對彩色影象的 fastNlMeansDenoising 函數。

cv::cuda::fastNlMeansDenoisingColored (InputArray src, OutputArray dst, float h_luminance, float photo_render, int search_window=21, int block_size=7, Stream &stream=Stream::Null()) 
cv::fastNlMeansDenoisingColored (InputArray src, OutputArray dst, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21)

針對影象序列的 fastNlMeansDenoising 函數。

cv::fastNlMeansDenoisingColoredMulti (InputArrayOfArrays srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21)
 
cv::fastNlMeansDenoisingMulti (InputArrayOfArrays srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, int templateWindowSize=7, int searchWindowSize=21)
 
cv::fastNlMeansDenoisingMulti (InputArrayOfArrays srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, const std::vector< float > &h, int templateWindowSize=7, int searchWindowSize=21, int normType=NORM_L2)

執行純非區域性方法去噪,沒有任何簡化,因此速度不快。

cv::cuda::nonLocalMeans (InputArray src, OutputArray dst, float h, int search_window=21, int block_size=7, int borderMode=BORDER_DEFAULT, Stream &stream=Stream::Null())

三、OpenCV原始碼

1、原始碼路徑

opencvmodulesphotosrcdenoise_tvl1.cpp

2、原始碼程式碼

#include "precomp.hpp"
#include <vector>
#include <algorithm>
 
#define ABSCLIP(val,threshold) MIN(MAX((val),-(threshold)),(threshold))
 
namespace cv{
    class AddFloatToCharScaled{
        public:
            AddFloatToCharScaled(double scale):_scale(scale){}
            inline double operator()(double a,uchar b){
                return a+_scale*((double)b);
            }
        private:
            double _scale;
    };
    using std::transform;
    void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda, int niters){
        CV_Assert(observations.size()>0 && niters>0 && lambda>0);
        const double L2 = 8.0, tau = 0.02, sigma = 1./(L2*tau), theta = 1.0;
        double clambda = (double)lambda;
        double s=0;
        const int workdepth = CV_64F;
        int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count;
        for(i=1;i<(int)observations.size();i++){
            CV_Assert(observations[i].rows==rows && observations[i].cols==cols);
        }
        Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2));
        observations[0].convertTo(X, workdepth, 1./255);
        std::vector< Mat_<double> > Rs(observations.size());
        for(count=0;count<(int)Rs.size();count++){
            Rs[count]=Mat::zeros(rows,cols,workdepth);
        }
        for( i = 0; i < niters; i++ )
        {
            double currsigma = i == 0 ? 1 + sigma : sigma;
            // P_ = P + sigma*nabla(X)
            // P(x,y) = P_(x,y)/max(||P(x,y)||,1)
            for( y = 0; y < rows; y++ )
            {
                const double* x_curr = X.ptr<double>(y);
                const double* x_next = X.ptr<double>(std::min(y+1, rows-1));
                Point2d* p_curr = P.ptr<Point2d>(y);
                double dx, dy, m;
                for( x = 0; x < cols-1; x++ )
                {
                    dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x;
                    dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
                    m = 1.0/std::max(std::sqrt(dx*dx + dy*dy), 1.0);
                    p_curr[x].x = dx*m;
                    p_curr[x].y = dy*m;
                }
                dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
                m = 1.0/std::max(std::abs(dy), 1.0);
                p_curr[x].x = 0.0;
                p_curr[x].y = dy*m;
            }
            //Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda)
            for(count=0;count<(int)Rs.size();count++){
                transform<MatIterator_<double>,MatConstIterator_<uchar>,MatIterator_<double>,AddFloatToCharScaled>(
                        Rs[count].begin(),Rs[count].end(),observations[count].begin<uchar>(),
                        Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0));
                Rs[count]+=sigma*X;
                min(Rs[count],clambda,Rs[count]);
                max(Rs[count],-clambda,Rs[count]);
            }
            for( y = 0; y < rows; y++ )
            {
                double* x_curr = X.ptr<double>(y);
                const Point2d* p_curr = P.ptr<Point2d>(y);
                const Point2d* p_prev = P.ptr<Point2d>(std::max(y - 1, 0));
                // X1 = X + tau*(-nablaT(P))
                x = 0;
                s=0.0;
                for(count=0;count<(int)Rs.size();count++){
                    s=s+Rs[count](y,x);
                }
                double x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s;
                    // X = X2 + theta*(X2 - X)
                x_curr[x] = x_new + theta*(x_new - x_curr[x]);
                for(x = 1; x < cols; x++ )
                {
                    s=0.0;
                    for(count=0;count<(int)Rs.size();count++){
                        s+=Rs[count](y,x);
                    }
                        // X1 = X + tau*(-nablaT(P))
                    x_new = x_curr[x] + tau*(p_curr[x].x - p_curr[x-1].x + p_curr[x].y - p_prev[x].y)-tau*s;
                        // X = X2 + theta*(X2 - X)
                    x_curr[x] = x_new + theta*(x_new - x_curr[x]);
                }
            }
        }
        result.create(X.rows,X.cols,CV_8U);
        X.convertTo(result, CV_8U, 255);
    }
}

四、效果影象範例

原圖

denoise_TVL1 

fastNlMeansDenoising

到此這篇關於OpenCV實現影象去噪演演算法的步驟詳解的文章就介紹到這了,更多相關OpenCV影象去噪演演算法內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com