首頁 > 軟體

關於yolov5的一些簡單說明(txt檔案、訓練結果分析等)

2022-06-24 14:05:24

一、yolo中txt檔案的說明:

二、yolo跑視訊、圖片檔案的格式:

三、yolov5訓練結果不好的原因:

1. 欠擬合:

在訓練集上表現很差,測試集上表現也很差的現象可能是欠擬合導致的,是因為泛化能力太強,誤識別率較高解決辦法:

       1)增加資料集的正樣本數, 增加主要特徵的樣本數量

       2)增加訓練次數

       3)減小正則化引數

2. 過擬合:

在訓練集上表現很好,在測試集上表現很差(模型太複雜)解決辦法:

        1)增加其他的特徵的樣本數, 重新訓練網路.

        2)訓練資料佔總資料的比例過小,增加資料的訓練量

3.  loss值不再變小就說明訓練好了

四、yolov5訓練結果(train檔案)分析

1.  confusion_matrix.png(混淆矩陣)

混淆矩陣能對分類問題的預測結果進行總結,顯示了分類模型的在進行預測時會對哪一部分產生混淆。

2. F1_curve:

F1分數與置信度之間的關係。F1分數(F1-score)是分類問題的一個衡量指標,是精確率precision和召回率recall的調和平均數,最大為1,最小為0, 1是最好,0是最差

3. labels.jpg

第一個圖 classes:每個類別的資料量

第二個圖 labels:標籤

第三個圖 center xy

第四個圖 labels 標籤的長和寬

4. labels_corrrelogram.jpg 目前不知道

5. P_curve.png :

準確率precision和置信度confidence的關係圖

6. PR_curve.png:

PR曲線中的P代表的是precision(精準率)R代表的是recall(召回率),其代表的是精準率與召回率的關係,一般情況下,將recall設定為橫座標,precision設定為縱座標。PR曲線下圍成的面積即AP,所有類別AP平均值即Map.

如果PR圖的其中的一個曲線A完全包住另一個學習器的曲線B,則可斷言A的效能優於B,當A和B發生交叉時,可以根據曲線下方的面積大小來進行比較。一般訓練結果主要觀察精度和召回率波動情況(波動不是很大則訓練效果較好)

  • Precision和Recall往往是一對矛盾的效能度量指標;
  • 提高Precision == 提高二分類器預測正例門檻 == 使得二分類器預測的正例儘可能是真實正例;
  • 提高Recall == 降低二分類器預測正例門檻 == 使得二分類器儘可能將真實的正例挑選

7. R_curve.png :召回率和置信度之間的關係

8. results.png:

  • Box_loss:YOLO V5使用 GIOU Loss作為bounding box的損失,Box推測為GIoU損失函數均值,越小方框越準;
  • Objectness_loss:推測為目標檢測loss均值,越小目標檢測越準;
  • Classification_loss:推測為分類loss均值,越小分類越準;
  • Precision:精度(找對的正類/所有找到的正類);
  • Recall:真實為positive的準確率,即正樣本有多少被找出來了(召回了多少).Recall從真實結果角度出發,描述了測試集中的真實正例有多少被二分類器挑選了出來,即真實的正例有多少被該二分類器召回。
  • val Box_loss: 驗證集bounding box損失;
  • val Objectness_loss:驗證集目標檢測loss均值;
  • val classification_loss:驗證集分類loss均值;
  • mAP@.5:.95(mAP@[.5:.95]): 表示在不同IoU閾值(從0.5到0.95,步長0.05)(0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95)上的平均mAP。mAP@.5:表示閾值大於0.5的平均mAP。然後觀察mAP@0.5 & mAP@0.5:0.95 評價訓練結果。mAP是用Precision和Recall作為兩軸作圖後圍成的面積,m表示平均,@後面的數表示判定iou為正負樣本的閾值,@0.5:0.95表示閾值取0.5:0.05:0.95後取均值

注:以上資料、圖片來自於YOLOV5官網,CSDN優秀作者以及自己訓練的資料集,侵權刪除。

  本人正在學習事件相機檢測等內容(小白),希望能與學習事件相機的眾多大佬一起學習,共同交流!

總結

到此這篇關於關於yolov5的一些簡單說明的文章就介紹到這了,更多相關yolov5 txt檔案、訓練結果分析內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com