首頁 > 軟體

多執行緒python的實現及多執行緒有序性

2022-06-30 18:03:58

前言

多執行緒一般用於同時呼叫多個函數,cpu時間片輪流分配給多個任務 優點是提高cpu的使用率,使計算機減少處理多個任務的總時間;缺點是如果有全域性變數,呼叫多個函數會使全域性變數被多個函數修改,造成計算錯誤,這使需要使用join方法或者設定區域性變數來解決問題。python使用threading模組來實現多執行緒,threading.join()方法是保證呼叫join的子執行緒完成後,才會分配cpu給其他的子執行緒,從而保證執行緒執行的有序性。

一、多執行緒執行無序問題

我們首先建立三個範例,t1,t2,t3 t1範例呼叫function1函數,t2和t3函數呼叫function11函數,他們都是對全域性變數l1進行操作

程式碼如下:

import threading,time
l1 = []
#建立RLock鎖,acquire幾次,release幾次
lock = threading.RLock()
def function1(x,y):
    for i in range(x):
        l1.append(i)
        if i == 0:
            time.sleep(1)
    end_time = time.time()
    print("t{} is finished in {}s".format(y,end_time -time1 ))
def function11(x,y):
    for i in range(x):
        l1.append(i)
    end_time = time.time()
    print("t{} is finished in {}s".format(y, end_time -time1))
#2.建立子執行緒:thread類
if __name__ == '__main__':
    t1 = threading.Thread(target= function1, args = (100,1))
    t2 = threading.Thread(target= function11, args = (100,2))
    t3 = threading.Thread(target= function11, args = (100,3))
    time1 = time.time()
    print("time starts in {}".format(time1))
    t1.start()
    t2.start()
    t3.start()
    print(l1)

結果如下:

runfile('E:/桌面/temp.py', wdir='E:/桌面')
time starts in 1656474963.9487
t2 is finished in 0.0s
t3 is finished in 0.0s
[0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
t1 is finished in 1.0152690410614014s

我們可以看到,全域性變數中開頭有兩個0,而不是按著0,1,2,3的方式按序填充,所以可以得知全域性變數在多執行緒中是被多個函數無序呼叫的。為了保證多執行緒有序呼叫全域性變數,我們可以利用threading.join()的方法。

二、“join方法”解決多執行緒執行無序問題

我們重寫了function1函數,並命名為function2,t1呼叫function2函數。t2,t3不變。

程式碼如下:

import threading,time
l1 = []
#建立RLock鎖,acquire幾次,release幾次
lock = threading.RLock()
def function1(x,y):
    for i in range(x):
        l1.append(i)
        if i == 0:
            time.sleep(1)
    end_time = time.time()
    print("t{} is finished in {}s".format(y,end_time -time1))
def function11(x,y):
    for i in range(x):
        l1.append(i)
    end_time = time.time()
    print("t{} is finished in {}s".format(y,end_time -time1))
def function2(x,y):
    for i in range(x):
        l1.append(i)
        if i == 0:
            time.sleep(1)
    end_time = time.time()
    print("t{} is finished in {}s".format(y,end_time -time1))
#2.建立子執行緒:thread類
if __name__ == '__main__':
    t1 = threading.Thread(target= function2, args = (100,1))
    t2 = threading.Thread(target= function11, args = (100,2))
    t3 = threading.Thread(target= function11, args = (100,3))
    time1 = time.time()
    print("time starts in {}".format(time1))
    t1.start()
    t1.join()
    t2.start()
    t3.start()
    print(l1)

結果如下:

runfile('E:/桌面/temp.py', wdir='E:/桌面')
time starts in 1656476057.441827
t1 is finished in 1.0155227184295654s
t2 is finished in 1.0155227184295654s
t3 is finished in 1.0155227184295654s
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

由此可見,threading.join()方法可以解決多執行緒無序問題

三、threading.Thread()的常用引數

1.group:預設值None,為了實現ThreadGroup類而保留
2.target:在start方法中呼叫的可呼叫物件,即需要開啟執行緒的可呼叫物件,比如函數、方法
3.name:預設為“Thread-N”,字串形式的執行緒名稱
4.args:預設為空元組,引數target中傳入的可呼叫物件的引數元組
5.kwargs:預設為空字典{},引數target中傳入的可呼叫物件的關鍵字引數字典
6.daemon:預設為None

總結

到此這篇關於多執行緒python的實現及多執行緒有序性的文章就介紹到這了,更多相關python多執行緒內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com