首頁 > 軟體

Python Opencv使用ann神經網路識別手寫數位功能

2022-07-11 22:04:16

opencv中也提供了一種類似於Keras的神經網路,即為ann,這種神經網路的使用方法與Keras的很接近。
關於mnist資料的解析,讀者可以自己從網上下載相應壓縮檔案,用python自己編寫解析程式碼,由於這裡主要研究knn演演算法,為了圖簡單,直接使用Keras的mnist手寫數位解析模組。
本次程式碼執行環境為:
python 3.6.8
opencv-python 4.4.0.46
opencv-contrib-python 4.4.0.46

下面的程式碼為使用ann進行模型的訓練:

from keras.datasets import mnist
from keras import utils
import cv2
import numpy as np
#opencv中ANN定義神經網路層
def create_ANN():
    ann=cv2.ml.ANN_MLP_create()
    #設定神經網路層的結構 輸入層為784 隱藏層為80 輸出層為10
    ann.setLayerSizes(np.array([784,64,10]))
    #設定網路引數為誤差反向傳播法
    ann.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
    #設定啟用函數為sigmoid
    ann.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM)
    #設定訓練迭代條件 
    #結束條件為訓練30次或者誤差小於0.00001
    ann.setTermCriteria((cv2.TermCriteria_EPS|cv2.TermCriteria_COUNT,100,0.0001))
    return ann
#計算測試資料上的識別率
def evaluate_acc(ann,test_images,test_labels):
    #採用的sigmoid啟用函數,需要對結果進行置信度處理 
    #對於大於0.99的可以確定為1 對於小於0.01的可以確信為0
    test_ret=ann.predict(test_images)
    #預測結果是一個元組
    test_pre=test_ret[1]
    #可以直接最大值的下標 (10000,)
    test_pre=test_pre.argmax(axis=1)
    true_sum=(test_pre==test_labels)
    return true_sum.mean()
if __name__=='__main__':
    #直接使用Keras載入的訓練資料(60000, 28, 28) (60000,)
    (train_images,train_labels),(test_images,test_labels)=mnist.load_data()
    #變換資料的形狀並歸一化
    train_images=train_images.reshape(train_images.shape[0],-1)#(60000, 784)
    train_images=train_images.astype('float32')/255
    test_images=test_images.reshape(test_images.shape[0],-1)
    test_images=test_images.astype('float32')/255
    #將標籤變為one-hot形狀 (60000, 10) float32
    train_labels=utils.to_categorical(train_labels)
    #測試資料標籤不用變為one-hot (10000,)
    test_labels=test_labels.astype(np.int)
    
    #定義神經網路模型結構
    ann=create_ANN()
    #開始訓練    
    ann.train(train_images,cv2.ml.ROW_SAMPLE,train_labels)
    #在測試資料上測試準確率
    print(evaluate_acc(ann,test_images,test_labels))
    
    #儲存模型
    ann.save('mnist_ann.xml')
    #載入模型
    myann=cv2.ml.ANN_MLP_load('mnist_ann.xml')

訓練100次得到的準確率為0.9376,可以接著增加訓練次數或者提高神經網路的層次結構深度來提高準確率。
使用ann神經網路的模型結構非常小,因為只是儲存了權重引數。

可以看到整個模型檔案的大小才1M,而svm的大小為十多兆,knn的為幾百兆,因此使用ann神經網路更加適合部署在使用者端上。
接下來使用ann進行圖片的測試識別:

import cv2
import numpy as np
if __name__=='__main__':
    #讀取圖片
    img=cv2.imread('shuzi.jpg',0)
    img_sw=img.copy()
    #將資料型別由uint8轉為float32
    img=img.astype(np.float32)
    #圖片形狀由(28,28)轉為(784,)
    img=img.reshape(-1,)
    #增加一個維度變為(1,784)
    img=img.reshape(1,-1)
    #圖片資料歸一化
    img=img/255
    #載入ann模型
    ann=cv2.ml.ANN_MLP_load('minist_ann.xml')
    #進行預測
    img_pre=ann.predict(img)
    #因為啟用函數sigmoid,因此要進行置信度處理
    ret=img_pre[1]
    ret[ret>0.9]=1
    ret[ret<0.1]=0
    print(ret)
    cv2.imshow('test',img_sw)
    cv2.waitKey(0)

執行程式,結果如下,可見該模型正確識別了數位0.

到此這篇關於Python Opencv使用ann神經網路識別手寫數位的文章就介紹到這了,更多相關python opencv識別手寫數位內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com