<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
Python的Pandas針對DataFrame,Series提供了多個合併函數,通過引數的調整可以輕鬆實現DatafFrame的合併。
首先,定義3個DataFrame df1,df2,df3,進行concat、merge、append函數的實驗。
df1=pd.DataFrame([[1,2,3],[2,3,4]],columns=['a','b','c']) df2=pd.DataFrame([[2,3,4],[3,4,5]],columns=['a','b','c']) df3=pd.DataFrame([[1,2,3],[2,3,4]],columns=['a','b','d'])
df1 a b c 0 1 2 3 1 2 3 4 df2 a b c 0 2 3 4 1 3 4 5 df3 a b d 0 1 2 3 1 2 3 4
pandas中concat函數的完整表達,包含多個引數,常用的有axis,join,ignore_index.
concat函數的第一個引數為objs,一般為一個list列表,包含要合併兩個或多個DataFrame,多個Series
pandas.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
1.axis表示合併方向,預設axis=0,兩個DataFrame按照索引方向縱向合併,axis=1則會按照columns橫向合併。
pd.concat([df1,df2],axis=1) a b c a b c 0 1 2 3 2 3 4 1 2 3 4 3 4 5
2.join表示合併方式,預設join=‘outer’,另外的取值為’inner’,只合並相同的部分,axis=0時合併結果為相同列名的資料,axis=1時為具有相同索引的資料
pd.concat([df2,df3],axis=0,join='inner') a b 0 2 3 1 3 4 0 1 2 1 2 3 pd.concat([df2,df3],axis=1,join='inner') a b c a b d 0 2 3 4 1 2 3 1 3 4 5 2 3 4
3.ignore_index表示索引的合併方式,預設為False,會保留原df的索引,如果設定ignore_index=True,合併後的df會重置索引。
pd.concat([df1,df2],ignore_index=True) a b c 0 1 2 3 1 2 3 4 2 2 3 4 3 3 4 5
merge函數是pandas提供的一種資料庫式的合併方法。
on可以指定合併的列、索引,how則是與資料庫join函數相似,取值為left,right,outer,inner.left,right分別對應left outer join, right outer join.
pandas.merge(left, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False, validate=None):
merge函數可以通過pandas.merge(df1,df2)、df1.merge(df2)兩種形式來實現兩個DataFrame的合併,df1.merge(df2)是預設left=self的情況。
df_merge =df1.merge(df3,on=['a','b']) a b c d 0 1 2 3 3 1 2 3 4 4
append函數是pandas針對DataFrame、Series等資料結構合併提供的函數。
df1.append(self, other, ignore_index=False, verify_integrity=False)
df1.append(df2)與pd.concat([df1,df2],ignore_index=False)具有相同的合併結果
df1.append(df2) a b c 0 1 2 3 1 2 3 4 0 2 3 4 1 3 4 5
更多使用方法可以參考pandas關於資料合併的官方檔案http://pandas.pydata.org/pandas-docs/stable/merging.html
1.merage
result = pd.merge(物件1, 物件2, on='key')
物件1 和 物件2分別為要合併的dataframe,key是在兩個dataframe都存在的列(類似於資料庫表中的主鍵)
2.append
result = df1.append(df2) result = df1.append([df2, df3]) result = df1.append(df4, ignore_index=True)
3.join
result = left.join(right, on=['key1', 'key2'], how='inner')
4.concat
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True) frames = [df1, df2, df3] result = pd.concat(frames) result = pd.concat(frames, keys=['x', 'y', 'z']) result = pd.concat([df1, df4], ignore_index=True)
以上為個人經驗,希望能給大家一個參考,也希望大家多多支援it145.com。
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45