<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
Seaborn - 繪製多標籤的混淆矩陣、召回、精準、F1
匯入seabornmatplotlibscipysklearn等包:
import seaborn as sns from matplotlib import pyplot as plt from scipy.special import softmax from sklearn.metrics import accuracy_score, confusion_matrix, precision_score, recall_score, f1_score sns.set_theme(color_codes=True)
從dataframe中,獲取y_true(真實標籤)和y_pred(預測標籤):
y_true = df["target"] y_pred = df['prediction']
計算驗證資料整體的準確率acc、精準率precision、召回率recall、F1,使用加權模式average=‘weighted’:
# 準確率acc,精準precision,召回recall,F1 acc = accuracy_score(df["target"], df['prediction']) precision = precision_score(y_true, y_pred, average='weighted') recall = recall_score(y_true, y_pred, average='weighted') f1 = f1_score(y_true, y_pred, average='weighted') print(f'[Info] acc: {acc}, precision: {precision}, recall: {recall}, f1: {f1}')
計算混淆矩陣:
# 橫座標是真實類別數,縱座標是預測類別數 cf_matrix = confusion_matrix(y_true, y_pred)
5類矩陣的繪製方案,混淆矩陣、百分比的混淆矩陣、召回矩陣、精準矩陣、F1矩陣:
程式碼如下:
# 橫座標是真實類別數,縱座標是預測類別數 cf_matrix = confusion_matrix(y_true, y_pred) figure, axes = plt.subplots(2, 2, figsize=(16*1.25, 16)) # 混淆矩陣 ax = sns.heatmap(cf_matrix, annot=True, fmt='g', ax=axes[0][0], cmap='Blues') ax.title.set_text("Confusion Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_cf_matrix.png")) # plt.show() # 混淆矩陣 - 百分比 cf_matrix = confusion_matrix(y_true, y_pred) ax = sns.heatmap(cf_matrix / np.sum(cf_matrix), annot=True, ax=axes[0][1], fmt='.2%', cmap='Blues') ax.title.set_text("Confusion Matrix (percent)") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_cf_matrix_p.png")) # plt.show() # 召回矩陣,行和為1 sum_true = np.expand_dims(np.sum(cf_matrix, axis=1), axis=1) precision_matrix = cf_matrix / sum_true ax = sns.heatmap(precision_matrix, annot=True, fmt='.2%', ax=axes[1][0], cmap='Blues') ax.title.set_text("Precision Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_recall.png")) # plt.show() # 精準矩陣,列和為1 sum_pred = np.expand_dims(np.sum(cf_matrix, axis=0), axis=0) recall_matrix = cf_matrix / sum_pred ax = sns.heatmap(recall_matrix, annot=True, fmt='.2%', ax=axes[1][1], cmap='Blues') ax.title.set_text("Recall Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") # plt.savefig(csv_path.replace(".csv", "_precision.png")) # plt.show() # 繪製4張圖 plt.autoscale(enable=False) plt.savefig(csv_path.replace(".csv", "_all.png"), bbox_inches='tight', pad_inches=0.2) plt.show() # F1矩陣 a = 2 * precision_matrix * recall_matrix b = precision_matrix + recall_matrix f1_matrix = np.divide(a, b, out=np.zeros_like(a), where=(b != 0)) ax = sns.heatmap(f1_matrix, annot=True, fmt='.2%', cmap='Blues') ax.title.set_text("F1 Matrix") ax.set_xlabel("y_pred") ax.set_ylabel("y_true") plt.savefig(csv_path.replace(".csv", "_f1.png")) plt.show()
輸出混淆矩陣、混淆矩陣(百分比)、召回矩陣、精準矩陣:
F1 Score:
到此這篇關於Python利用Seaborn繪製多標籤的混淆矩陣的文章就介紹到這了,更多相關Python Seaborn混淆矩陣內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45