首頁 > 軟體

Python資料結構樹與演演算法分析

2022-07-18 18:03:39

1.範例

樹的一些屬性:

  • 層次性:樹是按層級構建的,越籠統就越靠近頂部,越具體則越靠近底部。
  • 一個節點的所有子節點都與另一個節點的所有子節點無關。
  • 葉子節點都是獨一無二的。
  • 巢狀

2.術語及定義

  • 節點:樹的基礎部分。節點的名字 → 鍵,附加資訊 → 有效載荷。
  • 邊:兩個節點通過一條邊相連,表示它們之間存在關係。除了根節點,其他每個結點都僅有一條入邊,出邊則可能有多條。
  • 根節點:樹中唯一沒有入邊的結點。
  • 路徑:由邊連線的有序節點列表。
  • 子節點:一個節點通過出邊與子節點相連。
  • 父節點:一個節點是其所有子節點的父節點。
  • 兄弟節點:具有同一父節點的結點 → 互稱兄弟節點。
  • 子樹:一個父節點及其所有後代的節點和邊構成一棵子樹。
  • 葉子結點:葉子節點沒有子節點。
  • 層數:節點n的層數是從根節點到n的唯一路徑長度。根節點的層數為0。
  • 高度:樹的高度是其中節點層數的最大值。

1.定義一:樹由節點及連線節點的邊構成。

樹的屬性:

  • 有一個根節點除根節點外,其他每個節點都與其唯一的父節點相連。
  • 從根節點到其他每個節點有且僅有一條路徑。
  • 如果每個節點最多有兩個子節點 → 二元樹。

2.定義二:一棵樹要麼為空,要麼由一個根節點和零棵或多棵子樹構成,子樹本身也是一棵樹。

每棵子樹的根節點通過一條邊連到父樹的根節點。

3.實現

3.1 列表之列表

樹的根節點是myTree[0],左子樹是myTree[1],右子樹是myTree[2]。

# 列表函數
def BinaryTree(r):
    return [r,[],[]] # 根節點r,和兩個作為子節點的空列表
# 插入左子樹
def insertLeft(root,newBranch):
    t = root.pop(1)
    if len(t) > 1:
        root.insert(1,[newBranch,t,[]])
    else:
        root.insert(1,[newBranch,[],[]])
    return root

## 插入右子樹
def insertRight(root , newBranch):
    t = root.pop(2)
    if len(t) > 1:
        root.insert(2,[newBranch,[],t])
    else:
        root.insert(2,[newBranch,[],[]])
    return root
### 樹的存取函數
def getRootVal(root):
    return root[0]
def setRootVal(root,newVal):
    root[0] = newVal
def getLeftChild(root):
    return root[1]
def getRightChild(root):
    return root[2]
r = BinaryTree(3)
insertLeft(r,4)
print(r)

3.2節點與參照

定義一個類,其中有根節點和左右子樹的屬性。

class BinaryTree:
    def __init__(self,rootObj):
        self.key = rootObj
        self.leftChild = None
        self.rightChild = None

    ## 插入左子節點
    def insertLeft(self,newNode):
        if self.leftChild == None:
            self.leftChild = BinaryTree(newNode)
        else:
            t = BinaryTree(newNode)
            t.left = self.leftChild
            self.leftChild = t
    ## 插入右子節點
    def insertRight(self,newNode):
        if self.rightChild == None:
            self.rightChild = BinaryTree(newNode)
        else:
            t = BinaryTree(newNode)
            t.right = self.rightChild
            self.rightChild = t
    ## 存取函數
    def getRightChild(self):
        return self.rightChild

    def getLeftChild(self):
        return self.leftChild

    def setRootVal(self,obj):
        self.key = obj
    def getRootVal(self):
        return self.key

4.二元樹的應用

4.1解析樹

  • 根據完全括號表示式構建解析樹
  • 如何計算解析樹中的表示式
  • 如何將解析樹還原成最初的數學表示式

解析樹構建器:

import operator

from pythonds.basic import Stack
from pythonds.trees import BinaryTree
def buildParseTree(fpexp):
    fplist = fpexp.split()
    pStack = Stack()
    eTree = BinaryTree("")
    pStack.push(eTree)
    currentTree = eTree

    for i in fplist:
        if i == "(":
            currentTree.insertLeft("")
            pStack.push(currentTree)
            currentTree = currentTree.getLeftChild()

        elif i not in "+-*/)":
            currentTree.setRootVal(eval(i))
            parent = pStack.pop()
            currentTree = parent
        elif i in "+-*/":
            currentTree.setRootVal(i)
            currentTree.insertRight("")
            currentTree = currentTree.getRightChild()
        elif i == ")":
            currentTree = pStack.pop()
        else:
            raise ValueError("Unkown Operator :" + i )
    return eTree

## 計算二叉解析樹的遞迴函數
def evaluate(parseTree):
    opers = {
        "+":operator.add,"-":operator.sub,
        "*":operator.mul,"/":operator.truediv
    }
    
    leftC = parseTree.getLeftChild()
    rightC = parseTree.getRightChild()
    
    if leftC and rightC:
        fn = opers[parseTree.getRootVal()]
        return fn(evaluate(leftC),evaluate(rightC))
    else:
        return parseTree.getRootVal()

4.2樹的遍歷

  • 前序遍歷【根左右】
  • 中序遍歷【左根右】
  • 後序遍歷【左右根】

前序遍歷演演算法實現為外部函數:

def preorder(tree):
    if tree:
        print(tree.getRootVal())
        preorder(tree.getLeftChild())
        preorder(tree.getRightChild)

前序遍歷演演算法實現為BinaryTree類的方法

def preorder(self):
    print(self.key)
    if self.leftChild:
        self.leftChild.preorder()
    if self.rightChild:
        self.rightChild.preorder()

後序遍歷函數

def postorder(tree):
    if tree != None:
        postorder(tree.getLeftChild())
        postorder(tree.getRightChild())
        print(tree.getRootVal())

中序遍歷函數

def inorder(tree):
    if tree != None:
        inorder(tree.getLeftChild())
        print(tree.getRootVal())
        inorder(tree.getRightChild())

5.利用二元堆積實現優先順序佇列

佇列一個重要的變體 → 優先順序佇列。和佇列一樣,優先順序佇列從頭部移除元素,不過元素的邏輯順序是由優先順序決定的,優先順序最高的元素在最前,最低的元素在最後。

實現優先順序佇列的經典方法 → 二元堆積。入隊和出隊操作均可達到O(logn)

  • 最小堆【最小的元素一直在隊首】
  • 最大堆【最大的元素一直在隊首】 6.6.2 二元堆積的實現

結構屬性:

  • 完全二元樹:除了最底層,其他每一層的節點都是滿的。且在最底層,從左往右填充節點。
  • 完全二元樹可以用一個列表直接表示。

堆的有序性:對於堆中任意元素x及其父元素p,p都不大於x。

堆操作

程式碼實現:

class EchaDui:
    # 新建二元堆積
    def __init__(self):
        self.heapList = [0]
        self.currentSize = 0
    
    def percUp(self,i):
        while i // 2 > 0:
            if self.heapList[i] < self.heapList[i // 2]:
                tmp = self.heapList[i // 2]
                self.heapList[i // 2] = self.heapList[i]
                self.heapList[i] = tmp
                
            i = i // 2
    # 新加元素
    def insert(self,k):
        self.heapList.append(k)
        self.currentSize = self.currentSize + 1
        self.percUp(self.currentSize)
        
    def percDown(self,i):
        while (i * 2) <= self.currentSize:
            mc = self.minChild(i)
            if self.heapList[i] > self.heapList[mc]:
                tmp = self.heapList[i]
                self.heapList[i] = self.heapList[mc]
                self.heapList[mc] = tmp
            i = mc
    def minChild(self,i):
        if i * 2 + 1 > self.currentSize:
            return i * 2
        else:
            if self.heapList[i*2] < self.heapList[i*2 + 1]:
                return i * 2
            else:
                return i * 2 + 1
    ## 從二元堆積中刪除最小的元素
    def delMin(self):
        retval = self.heapList[1]
        self.heapList[1] = self.heapList[self.currentSize]
        self.currentSize = self.currentSize - 1
        self.heapList.pop()
        self.percDown(1)
        return retval
        
    ## 根據元素列表構建堆
    def builgHeap(self,alist):
        i = len(alist) // 2
        self.currentSize = len(alist)
        self.heapList = [0] + alist[:]
        while (i > 0):
            self.percDown(i)
            i = i - 1

6.二元搜尋樹

6.1搜尋樹的實現

二元搜尋樹依賴性質:小於父節點的鍵都在左子樹中,大於父節點的鍵則都在右子樹。

程式碼實現:

class BinarySearchTree:
    def __init__(self):
        self.root = None
        self.size = 0
    def length(self):
        return self.size
    def __len__(self):
        return self.size
    def __iter__(self):
        return self.root.__iter__()
    # 插入新節點
    def put(self,key,val):
        if self.root:
            self._put(key,val,self.root)
        else:
            self.root = TreeNode(key,val)
        self.size = self.size + 1

    def _put(self,key,val,currentNode):
        if key < currentNode.key:
            if currentNode.hasLeftChild():
                self._put(key,val,currentNode.leftChild)
            else:
                currentNode.leftChild = TreeNode(key,val,parent=currentNode)
        else:
            if currentNode.hasRightChild():
                self._put(key,val,currentNode.rightChild)
            else:
                currentNode.rightChild = TreeNode(key,val,parent=currentNode)
    def __setitem__(self, key, value):
        self._put(key,value)

    ## 查詢鍵對應的值
    def get(self,key):
        if self.root:
            res = self._get(key,self.root)
            if res:
                return res.payload
            else:
                return None
        else:
            return None
    def _get(self,key,currentNode):
        if not currentNode:
            return None
        elif currentNode.key == key:
            return currentNode
        elif key < currentNode.key:
            return self._get(key,currentNode.leftChild)
        else:
            return self._get(key,currentNode.rightChild)
    def __getitem__(self, key):
        return self.get(key)

    # 檢查樹中是否有某個鍵
    def __contains__(self, key):
        if self._get(key,self.root):
            return True
        else:
            return False
    # 刪除
    def delete(self,key):
        if self.size > 1:
            nodeToRemove = self._get(key,self.root)
            if nodeToRemove:
                self.remove(nodeToRemove)
                self.size = self.size - 1
            else:
                raise KeyError("Error,key not in tree")
        elif self.size == 1 and self.root.key == key:
            self.root = None
            self.size = self.size - 1
        else:
            raise KeyError("Error,key not in tree")
    def __delitem__(self, key):
        self.delete(key)

    """
        1. 待刪除節點沒有子節點
        2. 待刪除節點只有一個子節點
        3. 待刪除節點有兩個子節點
    """
    # 尋找後繼結點
    def findSuccessor(self):
        succ = None
        if self.hasRightChild():
            succ = self.rightChild.findMin()
        else:
            if self.parent:
                if self.isLeftChild():
                    succ = self.parent
                else:
                    self.parent.rightChild = None
                    succ = self.parent.findSuccessor()
                    self.parent.rightChild = self
        return succ

    def findMin(self):
        current = self
        while current.hasLeftChild():
            current = current.leftChild
        return current

    def spliceOut(self):
        if self.isLeaf():
            if self.isLeftChild():
                self.parent.leftChild = None
            else:
                self.parent.rightChild = None
        elif self.hasAnyChildren():
            if self.hasLeftChild():
                if self.isLeftChild():
                    self.parent.leftChild = self.leftChild
                else:
                    self.parent.rightChild = self.leftChild
                self.leftChild.parent = self.parent

            else:
                if self.isLeftChild():
                    self.parent.leftChild = self.rightChild
                else:
                    self.parent.rightChild = self.rightChild
                self.rightChild.parent = self.parent

    def remove(self,currentNode):
        if currentNode.isLeaf():
            if currentNode == currentNode.parent.leftChild:
                currentNode.parent.leftChild = None
            else:
                currentNode.parent.rightChild = None
        elif currentNode.hasBothChildren():
            succ = currentNode.findSuccessor()
            succ.spliceOut()
            currentNode.key = succ.key
            currentNode.payload = succ.payload
        else:
            if currentNode.hasLeftChild():
                if currentNode.isLeftChild():
                    currentNode.leftChild.parent = currentNode.parent
                    currentNode.parent.leftChild = currentNode.leftChild
                elif currentNode.isRightChild():
                    currentNode.leftChild.parent = currentNode.parent
                    currentNode.parent.rightChild = currentNode.leftChild
                else:
                    currentNode.replaceNodeData(currentNode.leftChild.key,
                                                currentNode.leftChild.payload,
                                                currentNode.leftChild.leftChild,
                                                currentNode.leftChild.rightChild
                                                )
            else:
                if currentNode.isLeftChild():
                    currentNode.rightChild.parent = currentNode.parent
                    currentNode.parent.leftChild = currentNode.rightChild
                elif currentNode.isRightChild():
                    currentNode.rightChild.parent = currentNode.parent
                    currentNode.parent.rightChild = currentNode.rightChild
                else:
                    currentNode.replaceNodeData(currentNode.rightChild.key,
                    currentNode.rightChild.payload,
                    currentNode.rightChild.leftChild,
                    currentNode.rightChild.rightChild                            
                                                )
    # 二元搜尋樹迭代器
    def __iter__(self):
        if self:
            if self.hasLeftChild():
                for elem in self.leftChild:
                    yield elem
            yield self.key
            if self.hasRightChild():
                for elem in self.rightChild:
                    yield elem

class TreeNode:
    def __init__(self,key,val,left = None,right = None,parent = None):
        self.key = key
        self.payload = val
        self.leftChild = left
        self.rightChild = right
        self.parent = parent

    def hasLeftChild(self):
        return self.leftChild
    def hasRightChild(self):
        return self.rightChild
    def isLeftChild(self):
        return self.parent and self.parent.leftChild == self
    def isRightChild(self):
        return self.parent and self.parent.rightChild == self
    def isRoot(self):
        return not self.parent
    def isLeaf(self):
        return not (self.rightChild or self.leftChild)
    def hasAnyChildren(self):
        return self.rightChild or self.leftChild
    def replaceNodeData(self,key,value,lc,rc):
        self.key = key
        self.payload = value
        self.leftChild = lc
        self.rightChild = rc
        if self.hasLeftChild():
            self.leftChild.parent = self
        if self.hasRightChild():
            self.rightChild.parent = self

7.平衡二元搜尋樹(AVL樹)

實現AVL樹時,要記錄每個節點的平衡因子。

平衡因子 = 左右子樹的高度之差

→ 保證樹的平衡因子為-1,0,1,可以使得關鍵操作獲得更好的大O效能

#from 第6章樹.二元搜尋樹 import TreeNode
def _put(self, key, val, currentNode):
    if key < currentNode.key:
        if currentNode.hasLeftchi1d():
            self._put(key, val, currentNode.leftChild)
        else:
            currentNode.leftChild = TreeNode(key, val,parent=currentNode)
            self.updateBalance(currentNode.leftChild)
    else:
        if currentNode.hasRightChild():
            self._put(key, val, currentNode.rightChild)
        else:
            currentNode.rightchild - TreeNode(key, val,parent=currentNode)
            self.updateBalance(currentNode.rightChild)
def updateBalance(self, node):
    if node.balanceFactor > 1 or node.balanceFactor < -1:
        self.rebalance(node)
        return
    if node.parent != None:
        if node.isLeftChild():
            node.parent.balanceFactor += 1
        elif node.isRightChild():
            node.parent.balanceFactor -= 1
        if node.parent.balanceFactor != 0:
            self.updateBalance(node.parent)
# 實現左旋
def rotateLeft (self, rotRoot) :
    newRoot = rotRoot .rightchild
    rotRoot .rightChild = newRoot.leftChild
    if newRoot . leftChild !=None :
        newRoot . leftChild. parent = rotRoot
    newRoot.parent =rotRoot.parent
    if rotRoot .isRoot( ):
        self.root = newRoot
    else:
        if rotRoot .isLeftChild():
            rotRoot.parent .leftChild = newRoot
        else:
            rotRoot.parent .rightChild = newRoot
    newRoot . leftChild = rotRoot
    rotRoot.parent = newRoot
    rotRoot. balanceFactor = rotRoot . balanceFactor + 1 - min(newRoot . balanceFactor,0)
    newRoot . balanceFactor = newRoot . balanceFactor + 1 +max(rotRoot . balanceFactor,o )

# 實現再平衡
def rebalance(self, node) :
    if node. balanceFactor < 0:
        if node .rightChild .balanceFactor > 0:
            self.rotateRight (node.rightChild)self.rotateLeft (node)
        else:
            self.rotateLeft (node)
    elif node. balanceFactor > 0 :
        if node . leftChild. balanceFactor < 0:
            self.rotateLeft (node. leftChild)
            self.rotateRight (node)
        else:
            self.rotateRight (node)
nceFactor + 1 - min(newRoot . balanceFactor,0)
    newRoot . balanceFactor = newRoot . balanceFactor + 1 +max(rotRoot . balanceFactor,o )
# 實現再平衡
def rebalance(self, node) :
    if node. balanceFactor < 0:
        if node .rightChild .balanceFactor > 0:
            self.rotateRight (node.rightChild)self.rotateLeft (node)
        else:
            self.rotateLeft (node)
    elif node. balanceFactor > 0 :
        if node . leftChild. balanceFactor < 0:
            self.rotateLeft (node. leftChild)
            self.rotateRight (node)
        else:
            self.rotateRight (node)

到此這篇關於Python資料結構樹與演演算法分析的文章就介紹到這了,更多相關Python資料結構樹內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com