<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
import seaborn as sns import matplotlib.pyplot as plt import numpy as np sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #預設畫條形圖 sns.barplot(x="day",y="total_bill",data=df) plt.show() #計算平均值看是否和條形圖的高度一致 print(df.groupby("day").agg({"total_bill":[np.mean]})) print(df.groupby("day").agg({"total_bill":[np.std]})) # 注意這個地方error bar顯示並不是標準差
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122
# import libraries import seaborn as sns import numpy as np import matplotlib.pyplot as plt # load dataset tips = sns.load_dataset("tips") # Set the figure size plt.figure(figsize=(14, 8)) # plot a bar chart ax = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, ci=85, capsize=.2, color='lightblue')
ax=sns.barplot(x="day",y="total_bill",data=df,capsize=1.0) plt.show()
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #預設畫條形圖 ax=sns.barplot(x="day",y="total_bill",data=df) plt.show() for p in ax.lines: width = p.get_linewidth() xy = p.get_xydata() # 顯示error bar的值 print(xy) print(width) print(p)
[[ 0. 15.85041935] [ 0. 19.64465726]] 2.7 Line2D(_line0) [[ 1. 13.93096053] [ 1. 21.38463158]] 2.7 Line2D(_line1) [[ 2. 18.57236207] [ 2. 22.40351437]] 2.7 Line2D(_line2) [[ 3. 19.66244737] [ 3. 23.50109868]] 2.7 Line2D(_line3)
fig, ax = plt.subplots(figsize=(8, 6)) sns.barplot(x='day', y='total_bill', data=df, capsize=0.2, ax=ax) # show the mean for p in ax.patches: h, w, x = p.get_height(), p.get_width(), p.get_x() xy = (x + w / 2., h / 2) text = f'Mean:n{h:0.2f}' ax.annotate(text=text, xy=xy, ha='center', va='center') ax.set(xlabel='day', ylabel='total_bill') plt.show()
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #預設畫條形圖 sns.barplot(x="day",y="total_bill",data=df,ci="sd",capsize=1.0)## 注意這個ci引數 plt.show() print(df.groupby("day").agg({"total_bill":[np.mean]})) print(df.groupby("day").agg({"total_bill":[np.std]}))
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #預設畫條形圖 sns.barplot(x="day",y="total_bill",data=df,ci=68,capsize=1.0)## 注意這個ci引數 plt.show()
import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style="whitegrid") df = sns.load_dataset("tips") #預設畫條形圖 sns.barplot(x="day",y="total_bill",data=df,ci=95) plt.show() #計算平均值看是否和條形圖的高度一致 print(df.groupby("day").agg({"total_bill":[np.mean]}))
total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000
#計算平均值看是否和條形圖的高度一致 df = sns.load_dataset("tips") print("="*20) print(df.groupby("day").agg({"total_bill":[np.mean]})) # 分組求均值 print("="*20) print(df.groupby("day").agg({"total_bill":[np.std]})) # 分組求標準差 print("="*20) print(df.groupby("day").agg({"total_bill":"nunique"})) # 這裡統計的是不同的數目 print("="*20) print(df.groupby("day").agg({"total_bill":"count"})) # 這裡統計的是每個分組樣本的數量 print("="*20) print(df["day"].value_counts()) print("="*20)
==================== total_bill mean day Thur 17.682742 Fri 17.151579 Sat 20.441379 Sun 21.410000 ==================== total_bill std day Thur 7.886170 Fri 8.302660 Sat 9.480419 Sun 8.832122 ==================== total_bill day Thur 61 Fri 18 Sat 85 Sun 76 ==================== total_bill day Thur 62 Fri 19 Sat 87 Sun 76 ==================== Sat 87 Sun 76 Thur 62 Fri 19 Name: day, dtype: int64 ====================
import numpy as np import pandas as pd df = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0], 'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']}) print(df) def categorize(x): m = x.mean() return 1 if m > 0.5 else 0 if m < 0.5 else np.nan result = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count']) result = result.rename(columns={'categorize' : 'Buy/Sell'}) result
Buy/Sell Trader 0 1 A 1 0 A 2 1 B 3 1 B 4 0 B 5 1 C 6 0 C 7 0 C
df = sns.load_dataset("tips") #預設畫條形圖 def custom1(x): m = x.mean() s = x.std() n = x.count()# 統計個數 #print(n) return m+1.96*s/np.sqrt(n) def custom2(x): m = x.mean() s = x.std() n = x.count()# 統計個數 #print(n) return m+s/np.sqrt(n) sns.barplot(x="day",y="total_bill",data=df,ci=95) plt.show() print(df.groupby("day").agg({"total_bill":[np.std,custom1]})) # 分組求標準差 sns.barplot(x="day",y="total_bill",data=df,ci=68) plt.show() print(df.groupby("day").agg({"total_bill":[np.std,custom2]})) #
[外連圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片儲存下來直接上傳(img-pkCx72ui-1658379974318)(output_24_0.png)]
total_bill std custom1 day Thur 7.886170 19.645769 Fri 8.302660 20.884910 Sat 9.480419 22.433538 Sun 8.832122 23.395703
[外連圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片儲存下來直接上傳(img-GFyIePmW-1658379974318)(output_24_2.png)]
total_bill std custom2 day Thur 7.886170 18.684287 Fri 8.302660 19.056340 Sat 9.480419 21.457787 Sun 8.832122 22.423114
ax=sns.barplot(x="day",y="total_bill",data=df,ci=95) ax.yaxis.grid(True) # Hide the horizontal gridlines ax.xaxis.grid(True) # Show the vertical gridlines
fig, ax = plt.subplots(figsize=(10, 8)) sns.barplot(x="day",y="total_bill",data=df,ci=95,ax=ax) ax.set_yticks([i for i in range(30)]) ax.yaxis.grid(True) # Hide the horizontal gridlines
#estimator 指定條形圖高度使用相加的和 sns.barplot(x="day",y="total_bill",data=df,estimator=np.sum) plt.show() #計算想加和看是否和條形圖的高度一致 print(df.groupby("day").agg({"total_bill":[np.sum]})) ''' total_bill sum day Fri 325.88 Sat 1778.40 Sun 1627.16 Thur 1096.33 '''
到此這篇關於Python seaborn barplot畫圖案例的文章就介紹到這了,更多相關Python seaborn barplot 內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45