<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
本文範例為大家分享了pytorch使用nn.Moudle實現邏輯迴歸的具體程式碼,供大家參考,具體內容如下
pytorch使用nn.Moudle實現邏輯迴歸
loss下降不明顯
#原始碼 out的資料接收方式 if torch.cuda.is_available(): x_data=Variable(x).cuda() y_data=Variable(y).cuda() else: x_data=Variable(x) y_data=Variable(y) out=logistic_model(x_data) #根據邏輯迴歸模型擬合出的y值 loss=criterion(out.squeeze(),y_data) #計算損失函數
#原始碼 out的資料有拼裝資料直接輸入 # if torch.cuda.is_available(): # x_data=Variable(x).cuda() # y_data=Variable(y).cuda() # else: # x_data=Variable(x) # y_data=Variable(y) out=logistic_model(x_data) #根據邏輯迴歸模型擬合出的y值 loss=criterion(out.squeeze(),y_data) #計算損失函數 print_loss=loss.data.item() #得出損失函數值
import torch from torch import nn from torch.autograd import Variable import matplotlib.pyplot as plt import numpy as np #生成資料 sample_nums = 100 mean_value = 1.7 bias = 1 n_data = torch.ones(sample_nums, 2) x0 = torch.normal(mean_value * n_data, 1) + bias # 類別0 資料 shape=(100, 2) y0 = torch.zeros(sample_nums) # 類別0 標籤 shape=(100, 1) x1 = torch.normal(-mean_value * n_data, 1) + bias # 類別1 資料 shape=(100, 2) y1 = torch.ones(sample_nums) # 類別1 標籤 shape=(100, 1) x_data = torch.cat((x0, x1), 0) #按維數0行拼接 y_data = torch.cat((y0, y1), 0) #畫圖 plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn') plt.show() # 利用torch.nn實現邏輯迴歸 class LogisticRegression(nn.Module): def __init__(self): super(LogisticRegression, self).__init__() self.lr = nn.Linear(2, 1) self.sm = nn.Sigmoid() def forward(self, x): x = self.lr(x) x = self.sm(x) return x logistic_model = LogisticRegression() # if torch.cuda.is_available(): # logistic_model.cuda() #loss函數和優化 criterion = nn.BCELoss() optimizer = torch.optim.SGD(logistic_model.parameters(), lr=0.01, momentum=0.9) #開始訓練 #訓練10000次 for epoch in range(10000): # if torch.cuda.is_available(): # x_data=Variable(x).cuda() # y_data=Variable(y).cuda() # else: # x_data=Variable(x) # y_data=Variable(y) out=logistic_model(x_data) #根據邏輯迴歸模型擬合出的y值 loss=criterion(out.squeeze(),y_data) #計算損失函數 print_loss=loss.data.item() #得出損失函數值 #反向傳播 loss.backward() optimizer.step() optimizer.zero_grad() mask=out.ge(0.5).float() #以0.5為閾值進行分類 correct=(mask==y_data).sum().squeeze() #計算正確預測的樣本個數 acc=correct.item()/x_data.size(0) #計算精度 #每隔20輪列印一下當前的誤差和精度 if (epoch+1)%100==0: print('*'*10) print('epoch {}'.format(epoch+1)) #誤差 print('loss is {:.4f}'.format(print_loss)) print('acc is {:.4f}'.format(acc)) #精度 w0, w1 = logistic_model.lr.weight[0] w0 = float(w0.item()) w1 = float(w1.item()) b = float(logistic_model.lr.bias.item()) plot_x = np.arange(-7, 7, 0.1) plot_y = (-w0 * plot_x - b) / w1 plt.xlim(-5, 7) plt.ylim(-7, 7) plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=logistic_model(x_data)[:,0].cpu().data.numpy(), s=100, lw=0, cmap='RdYlGn') plt.plot(plot_x, plot_y) plt.show()
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支援it145.com。
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45