首頁 > 軟體

Python實現多項式擬合正弦函數詳情

2022-08-01 22:04:24

1. 實驗目的

掌握最小二乘法求解(無懲罰項的損失函數)、掌握加懲罰項(2 範數)的損失函數優化、梯度下降法、共軛梯度法、理解過擬合、克服過擬合的方法(如加懲罰項、增加樣本)

2. 實驗要求

生成資料,加入噪聲;

用高階多項式函數擬合曲線;

用解析解求解兩種 loss 的最優解(無正則項和有正則項)

優化方法求解最優解(梯度下降,共軛梯度);

用你得到的實驗資料,解釋過擬合。

用不同資料量,不同超引數,不同的多項式階數,比較實驗效果。

語言不限,可以用 matlab,python。求解解析解時可以利用現成的矩陣求逆。梯度下降,共軛梯度要求自己求梯度,迭代優化自己寫。不許用現成的平臺,例如 pytorch,tensorflow 的自動微分工具。

3. 實驗內容

3.1 演演算法原理

本實驗需要用多項式來擬合正弦函數。在 m 階多項式中,有 m+1 個待定係數,m+1 個係數(由低到高)組成的(列)向量記作 w。要確定 w,用最小二乘法。

設 E(w) = 1/2 * (Xw – Y)^T(Xw – Y),其中,X 為多項式中各個未知項代入觀測資料求得的矩陣,若記 Xi 為 X 的第 i 行的向量,則 Xi[j]為第 i 個觀測資料 xi 的 j 次方,記有 n 組觀測資料,多項式最高次為 m,易知 X 的維度為 n * (m+1)。Y 為觀測標籤向量。即 Y[j]為第 j 組觀測資料的標籤值(即 y 值)。從而問題轉化為:求向量 w,使得 E(w)最小。

  • 若不加入正則項,令損失函數導數為零,求 w
  • 若加入正則項,令損失函數導數為零,求 w
  • 加入正則項,對損失函數用梯度下降,當損失函數收斂時,求 w
  • 加入正則項,對損失函數用共軛梯度法,迴圈迭代 m+1 次,求 w 3.2 演演算法實現 生成資料,加入噪聲

用高階多項式函數擬合曲線;

用解析解求解兩種 loss 的最優解(無正則項和有正則項)

無正則項:

有正則項:

優化方法求解最優解(梯度下降,共軛梯度)

梯度下降法:

共軛梯度法:

用你得到的實驗資料,解釋過擬合。

多項式次數為 1 時:

多項式次數為 3 時:

當多項式次數為 5 時:

當多項式次數為 7 時:

當多項式次數為 9 時:

到此這篇關於Python實現多項式擬合正弦函數詳情的文章就介紹到這了,更多相關Python擬合正弦函數內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!


IT145.com E-mail:sddin#qq.com