<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
最近做opencv專案時,使用膚色分割的方法檢測目標物體時,背景帶來的干擾非常讓人頭痛。於是先將背景分割出去,將影響降低甚至消除。由於初次接觸opencv,敘述不當的地方還請指正。
(以下文字原文來源於https://docs.opencv.org/3.4.7/d8/d38/tutorial_bgsegm_bg_subtraction.html)
背景減除法是很多基於視覺的應用的一個主要預處理步驟。例如使用一個靜止的攝像頭拍攝進出房間的人數,或是交通攝像頭捕獲車輛資訊等。在以上的例子中,首先你需要單獨把人和交通工具提取出來。從技術上來說,你需要從靜止的背景中提取移動前景目標。
通常情況下,我們的背景往往是未知的,因此需要通過一定的方法得到視訊背景,然後用新的影象減去背景圖片即可。
在opencv中提供了幾種背景減除的方法:
這是基於高斯混合模型的演演算法,混合模型表示了觀測資料在總體中的概率分佈,高斯分佈即正態分佈,正態分佈如下圖:
(圖片來源於網路)
而高斯混合模型就是使用高斯分佈的混合模型,由於高斯分佈具有良好的數學性質和計算效能,它的概率分佈遵循高斯分佈。
cv2.bgsegm.createBackgroundSubtractorMOG()使用時可以不用傳入引數
import cv2 cap = cv2.VideoCapture(0) fgbg = cv2.bgsegm.createBackgroundSubtractorMOG() se = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) while cap.isOpened(): ret, frame = cap.read() # 用於計算前景掩模 fgmask = fgbg.apply(frame) _, binary = cv2.threshold(fgmask, 215, 255, cv2.THRESH_BINARY) binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, se) res = cv2.bitwise_and(frame, frame, mask=binary) cv2.imshow("res", res) if cv2.waitKey(1000 // 12) & 0xff == ord('q'): break cap.release() cv2.destroyAllWindows()
執行結果:
它是改進的高斯混合模型,為各個引數設定了一些合適的值。
import cv2 cap = cv2.VideoCapture(0) fgbg = cv2.createBackgroundSubtractorMOG2() se = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) while cap.isOpened(): ret, frame = cap.read() fgmask = fgbg.apply(frame) _, binary = cv2.threshold(fgmask, 215, 255, cv2.THRESH_BINARY) binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, se) backImage = fgbg.getBackgroundImage() res = cv2.bitwise_and(frame, frame, mask=binary) cv2.imshow("backImage", backImage) cv2.imshow("res", res) if cv2.waitKey(1000 // 12) & 0xff == ord('q'): break cap.release() cv2.destroyAllWindows()
執行結果:
GMG:Geometric Multigid,幾何多重網格。它預設使用前120幀影象進行建模,使用貝葉斯推斷方法判斷可能的前景物體。
import cv2 cap = cv2.VideoCapture(0) fgbg = cv2.bgsegm.createBackgroundSubtractorGMG() se = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) while cap.isOpened(): ret, frame = cap.read() fgmask = fgbg.apply(frame) _, binary = cv2.threshold(fgmask, 215, 255, cv2.THRESH_BINARY) binary = cv2.morphologyEx(binary, cv2.MORPH_OPEN, se) res = cv2.bitwise_and(frame, frame, mask=binary) cv2.imshow("res", res) if cv2.waitKey(1000 // 12) & 0xff == ord('q'): break cap.release() cv2.destroyAllWindows()
執行結果:
以上這三種方法對於檢測運動物體行之有效,但如果檢測靜態物體就不適合了。
在可以確定背景時採用幀差法,此方法不僅可以用於動態目標檢測,也能檢測靜態目標。
幀差法需要一個變數來檢測當前是第幾幀。即通過後面的幀減去第一幀得到所需前景。
import cv2 cap = cv2.VideoCapture(0) frameNum = 0 while cap.isOpened(): ret, frame = cap.read() frameNum += 1 tmp = frame.copy() if frameNum == 1: bgFrame = cv2.cvtColor(tmp, cv2.COLOR_BGR2GRAY) elif frameNum > 1: foreFrame = cv2.cvtColor(tmp, cv2.COLOR_BGR2GRAY) foreFrame = cv2.absdiff(foreFrame, bgFrame) _, thresh = cv2.threshold(foreFrame, 30, 255, cv2.THRESH_BINARY) gaussian = cv2.GaussianBlur(thresh, (3, 3), 0) cv2.imshow('gaussian', foreFrame) if cv2.waitKey(1000 // 12) & 0xff == ord('q'): break cap.release() cv2.destroyAllWindows()
執行結果:
上述除了使用濾波的方法,也可以直接用cv2.subtract()進行影象減法運算。
到此這篇關於詳解opencv去除背景演演算法的方法比較的文章就介紹到這了,更多相關opencv去除背景演演算法內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45