<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
作為當前先進的深度學習目標檢測演演算法YOLOv5,已經集合了大量的trick,但是在處理一些複雜背景問題的時候,還是容易出現錯漏檢的問題。此後的系列文章,將重點對YOLOv5的如何改進進行詳細的介紹,目的是為了給那些搞科研的同學需要創新點或者搞工程專案的朋友需要達到更好的效果提供自己的微薄幫助和參考。
加入SE通道注意力機制,可以讓網路更加關注待檢測目標,提高檢測效果
SE模組的原理和結構
第一步:確定新增的位置,作為隨插即用的注意力模組,可以新增到YOLOv5網路中的任何地方。本文以新增進C3模組中為例。
第二步:common.py構建融入se模組的C3,與原C3模組不同的是,該模組中的bottleneck中融入se模組。這樣新增主要為了更好的做實驗。
class seC3(nn.Module): # CSP Bottleneck with 3 convolutions def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion super(seC3, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c1, c_, 1, 1) self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) self.m = nn.Sequential(*[seBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)]) # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) def forward(self, x): return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) class seBottleneck(nn.Module): # Standard bottleneck def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion super(seBottleneck, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, 1, 1) self.cv2 = Conv(c_, c2, 3, 1, g=g) self.add = shortcut and c1 == c2 self.avgpool = nn.AdaptiveAvgPool2d(1) self.l1 = nn.Linear(c1, c1 // 4, bias=False) self.relu = nn.ReLU(inplace=True) self.l2 = nn.Linear(c1 // 4, c1, bias=False) self.sig = nn.Sigmoid() def forward(self, x): x = self.cv1(x) b, c, _, _ = x.size() y = self.avgpool(x).view(b, c) y = self.l1(y) y = self.relu(y) y = self.l2(y) y = self.sig(y) y = y.view(b, c, 1, 1) x = x * y.expand_as(x) return x + self.cv2(x) if self.add else self.cv2(self.cv1(x))
第三步:yolo.py中註冊我們進行修改的seC3
if m in [Conv, GhostConv, Bottleneck, Bottleneck_cot,TransformerC3,GhostBottleneck, SPP, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3,seC3]: c1, c2 = ch[f], args[0] if c2 != no: # if not output c2 = make_divisible(c2 * gw, 8) args = [c1, c2, *args[1:]] if m in [BottleneckCSP, seC3]: args.insert(2, n) # number of repeats n = 1
第四步:修改yaml檔案,本文以修改主幹特徵提取網路為例,將原C3模組改為seC3即可。
第五步:將train.py中改為本文的yaml檔案即可,開始訓練。
本人在多個資料集上做了大量實驗,針對不同的資料集效果不同,同一個資料集的不同新增位置方法也是有差異,需要大家進行實驗。有效果有提升的情況佔大多數。
PS:SE通道注意力機制,引數量引入較少,不僅僅是可以新增進YOLOv5,也可以新增進任何其他的深度學習網路,不管是分類還是檢測還是分割,主要是計算機視覺領域,都可能會有不同程度的提升效果。
到此這篇關於YOLOv5改進之新增SE注意力機制的文章就介紹到這了,更多相關YOLOv5新增SE注意力機制內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45