<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
近期在實際專案中使用到了PID控制演演算法,於是就該演演算法做一總結。
例子: 假設一個水缸,需要最終控制水缸的水位永遠維持在1米的高度。
水位目標:T 當前水位:Tn 加水量:U 誤差:error error=T-Tn 比例控制係數:kp U = k_p * errorU=kp∗error initial: T=1; Tn=0.2, error=1-0.2=0.8; kp=0.4
T=1 Tn=0.2 error=1-0.2 kp=0.4 for t in range(1, 10): U = kp * error Tn += U error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}') """ t=1 | add 0.32000 => Tn=0.52000 error=0.48000 t=2 | add 0.19200 => Tn=0.71200 error=0.28800 t=3 | add 0.11520 => Tn=0.82720 error=0.17280 t=4 | add 0.06912 => Tn=0.89632 error=0.10368 t=5 | add 0.04147 => Tn=0.93779 error=0.06221 t=6 | add 0.02488 => Tn=0.96268 error=0.03732 t=7 | add 0.01493 => Tn=0.97761 error=0.02239 t=8 | add 0.00896 => Tn=0.98656 error=0.01344 t=9 | add 0.00537 => Tn=0.99194 error=0.00806 """
根據kp取值不同,系統最後都會達到1米,只不過kp大了達到的更快。不會有穩態誤差。 若存在漏水情況,在相同情況下,經過多次加水後,水位會保持在0.75不在再變化,因為當U和漏水量一致的時候將保持不變——即穩態誤差 U=k_p*error=0.1 => error = 0.1/0.4 = 0.25U=kp∗error=0.1=>error=0.1/0.4=0.25,所以誤差永遠保持在0.25
T=1 Tn=0.2 error=1-0.2 kp=0.4 extra_drop = 0.1 for t in range(1, 100): U = kp * error Tn += U - extra_drop error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}') """ t=95 | add 0.10000 => Tn=0.75000 error=0.25000 t=96 | add 0.10000 => Tn=0.75000 error=0.25000 t=97 | add 0.10000 => Tn=0.75000 error=0.25000 t=98 | add 0.10000 => Tn=0.75000 error=0.25000 t=99 | add 0.10000 => Tn=0.75000 error=0.25000 """
實際情況中,這種類似水缸漏水的情況往往更加常見
所以單獨的比例控制,很多時候並不能滿足要求
比例+積分控制演演算法:
T=1 Tn=0.2 error=1-0.2 kp=0.4 extra_drop = 0.1 ki=0.2 sum_error = 0 for t in range(1, 20): sum_error += error U = kp * error + ki * sum_error Tn += U - extra_drop error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}') """ t=14 | add 0.10930 => Tn=0.97665 error=0.02335 t=15 | add 0.11025 => Tn=0.98690 error=0.01310 t=16 | add 0.10877 => Tn=0.99567 error=0.00433 t=17 | add 0.10613 => Tn=1.00180 error=-0.00180 t=18 | add 0.10332 => Tn=1.00512 error=-0.00512 t=19 | add 0.10097 => Tn=1.00608 error=-0.00608 """
在越靠近目標的時候則加的越少。
令:kd=0.2; d_error = 當前時刻誤差-前時刻誤差
T=1 Tn=0.2 error=1-0.2 kp=0.4 extra_drop = 0.1 ki=0.2 sum_error = 0 kd=0.2 d_error = 0 error_n = 0 error_b = 0 for t in range(1, 20): error_b = error_n error_n = error # print(error_b1, error_b2) d_error = error_n - error_b if t >= 2 else 0 sum_error += error U = kp * error + ki * sum_error + kd * d_error Tn += U - extra_drop error = T-Tn print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}') """ t=14 | add 0.09690 => Tn=0.96053 error=0.03947 | d_error: 0.01319 t=15 | add 0.10402 => Tn=0.96455 error=0.03545 | d_error: 0.00310 t=16 | add 0.10808 => Tn=0.97263 error=0.02737 | d_error: -0.00402 t=17 | add 0.10951 => Tn=0.98214 error=0.01786 | d_error: -0.00808 t=18 | add 0.10899 => Tn=0.99113 error=0.00887 | d_error: -0.00951 t=19 | add 0.10727 => Tn=0.99840 error=0.00160 | d_error: -0.00899 """
for kp_i in np.linspace(0, 1, 10): pid_plot(kp=kp_i, ki=0.2, kd=0.2)
for ki_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=ki_i, kd=0.2)
for kd_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=0.2, kd=kd_i)
pid_plot(kp=0.65, ki=0.05, kd=0.5, print_flag=True)
損失函數採用:RMSE
from scipy import optimize import matplotlib.pyplot as plt import numpy as np def pid_plot(args, plot_flag=True, print_flag=False): kp, ki, kd = args T=1 Tn=0.2 error=1-0.2 extra_drop = 0.1 sum_error = 0 d_error = 0 error_n = 0 error_b = 0 Tn_list = [] for t in range(1, 100): error_b = error_n error_n = error d_error = error_n - error_b if t >= 2 else 0 sum_error += error U = kp * error + ki * sum_error + kd * d_error Tn += U - extra_drop error = T-Tn Tn_list.append(Tn) if print_flag: print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}') if plot_flag: plt.plot(Tn_list) plt.axhline(1, linestyle='--', color='darkred', alpha=0.8) plt.title(f'$K_p$={kp:.3f} $K_i$={ki:.3f} $K_d$={kd:.3f}') plt.ylim([0, max(Tn_list) + 0.2]) plt.show() loss = np.sqrt(np.mean(np.square(np.ones_like(Tn_list) - np.array(Tn_list)))) return loss boundaries=[(0, 2), (0, 2), (0, 2)] res = optimize.fmin_l_bfgs_b(pid_plot, np.array([0.1, 0.1, 0.1]), args=(False, False), bounds = boundaries, approx_grad = True) pid_plot(res[0].tolist(), print_flag=True) pid_plot([0.65, 0.05, 0.5], print_flag=True)
牛頓法調參結果圖示 :
簡單手動調參圖示:
到此這篇關於PID原理與python的簡單實現和調參的文章就介紹到這了,更多相關PID與python內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45