<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
注:程式碼用 jupyter notebook跑的,分割線線上為程式碼,分割線下為執行結果
1.匯入庫生成缺失值
通過pandas生成一個6行4列的矩陣,列名分別為'col1','col2','col3','col4',同時增加兩個缺失值資料。
import numpy as np import pandas as pd from sklearn.impute import SimpleImputer #生成缺失資料 df=pd.DataFrame(np.random.randn(6,4),columns=['col1','col2','col3','col4']) #生成一份資料 #增加缺失值 df.iloc[1:2,1]=np.nan df.iloc[4,3]=np.nan df
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 NaN -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 NaN
5 -0.017370 -0.538245 -2.083904 0.230733
2.檢視哪些值缺失(第2行第2列,第5行第4列)
nan_all=df.isnull() #獲得所有資料中的nan nan_all
col1 col2 col3 col4
0 False False False False
1 False True False False
2 False False False False
3 False False False False
4 False False False True
5 False False False False
3 any()方法來查詢含有至少1個缺失值的列,all()方法來查詢全部缺失值的列
#使用any方法 nan_col1=df.isnull().any() #獲得含有nan的列 print(nan_col1)
col1 False
col2 True
col3 False
col4 True
dtype: bool
#使用all方法 nan_col2=df.isnull().all() #獲得全部為nan的列 print(nan_col2)
col1 False
col2 False
col3 False
col4 False
dtype: bool
4.法一:直接丟棄缺失值
df1=df.dropna()#直接丟棄含有nan的行記錄 df1
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
5 -0.017370 -0.538245 -2.083904 0.230733
5.法二:使用sklearn將缺失值替換為特定值
首先通過SimpleImputer建立一個預處理物件,缺失值替換方法預設用均值替換,及strategy=mean,還可以使用中位數median,眾數most_frequent進行替換,接著使用預處理物件的fit_transform對df進行處理,程式碼如下:
#使用sklearn將缺失值替換為特定值 nan_mean=SimpleImputer(strategy='mean') #用均值填補 nan_median=SimpleImputer(strategy='median') #用中位數填補 nan_0=SimpleImputer(strategy='constant',fill_value=0) #用0填補 #應用模型 nan_mean_result=nan_mean.fit_transform(df) nan_median_result=nan_median.fit_transform(df) nan_0_result=nan_0.fit_transform(df) print(nan_mean_result) print(nan_median_result) print(nan_0_result)
[-0.48014389 1.46399462 0.45481856 -1.53141863]
[-0.4185523 -0.22575384 -0.93125874 -0.53484561]
[-0.02808329 -0.42039426 0.925346 0.97579191]
[-0.14406438 -0.81156913 -0.0134516 0.11048025]
[-0.96649028 -0.82255505 0.22803842 -0.14985173]
[-0.01737047 -0.53824538 -2.0839036 0.23073341]
[-0.48014389 1.46399462 0.45481856 -1.53141863]
[-0.4185523 -0.53824538 -0.93125874 -0.53484561]
[-0.02808329 -0.42039426 0.925346 0.97579191]
[-0.14406438 -0.81156913 -0.0134516 0.11048025]
[-0.96649028 -0.82255505 0.22803842 0.11048025]
[-0.01737047 -0.53824538 -2.0839036 0.23073341]
[-0.48014389 1.46399462 0.45481856 -1.53141863]
[-0.4185523 0. -0.93125874 -0.53484561]
[-0.02808329 -0.42039426 0.925346 0.97579191]
[-0.14406438 -0.81156913 -0.0134516 0.11048025]
[-0.96649028 -0.82255505 0.22803842 0. ]
[-0.01737047 -0.53824538 -2.0839036 0.23073341]
6.法三:使用pandas將缺失值替換為特定值
pandas對缺失值處理方法是df.fillna(),該方法的兩個主要引數是value和method。前者通過固定或手動指定的值替換缺失值,後者使用pandas提供的方法替換缺失值。以下是method支援的方法:
(1)pad和ffill:使用前面的值替換缺失值
(2)backfill和bfill:使用後面的值替換缺失值
(3)大多數情況下用均值、眾數、中位數的方法較為常用
#使用pandas將缺失值替換為特定值 nan_result_pd1=df.fillna(method='backfill') nan_result_pd2=df.fillna(method='bfill',limit=1)#用後面的值替換缺失值,限制每列只能替換一個缺失值 nan_result_pd3=df.fillna(method='pad') nan_result_pd4=df.fillna(0) nan_result_pd5=df.fillna({'col2':1.1,'col4':1.2}) #手動指定兩個缺失值分別為1.1,1.2 nan_result_pd6=df.fillna(df.mean()['col2':'col4']) nan_result_pd7=df.fillna(df.median()['col2':'col4']) print(nan_result_pd1) print(nan_result_pd2) print(nan_result_pd3) print(nan_result_pd4) print(nan_result_pd5) print(nan_result_pd6) print(nan_result_pd7)
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.420394 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.230733
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.420394 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.230733
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 1.463995 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.110480
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 0.000000 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.000000
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 1.100000 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 1.200000
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.225754 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 -0.149852
5 -0.017370 -0.538245 -2.083904 0.230733
col1 col2 col3 col4
0 -0.480144 1.463995 0.454819 -1.531419
1 -0.418552 -0.538245 -0.931259 -0.534846
2 -0.028083 -0.420394 0.925346 0.975792
3 -0.144064 -0.811569 -0.013452 0.110480
4 -0.966490 -0.822555 0.228038 0.110480
5 -0.017370 -0.538245 -2.083904 0.230733
另外,如果是直接替換為特定值,也可以考慮用pandas的replace功能,例如本範例可直接使用df.replace(np.nan,0),這種方法簡單粗暴,但也能達到效果。當然replace的出現是為了解決各種替換用的,缺失值只是其中一種應用而已。
到此這篇關於python sklearn與pandas實現缺失值資料預處理流程詳解的文章就介紹到這了,更多相關python 資料預處理內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45