<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
之前基於特徵點的影象拼接如果是多張圖,每次計算變換矩陣,都有誤差,最後可以影象拼完就變形很大,基於模板的方法可以很好的解決這一問題。
import cv2 import numpy as np def matchStitch(imageLeft, imageRight): ImageLeft_gray = cv2.cvtColor(imageLeft,cv2.COLOR_BGR2GRAY) ImageRight_gray = cv2.cvtColor(imageRight,cv2.COLOR_BGR2GRAY) # cv2.imshow("gray", ImageLeft_gray) # cv2.waitKey() # 獲取影象長寬 height_Left, width_left = ImageLeft_gray.shape[:2] height_Right, width_Right = ImageRight_gray.shape[:2] # 模板區域 left_width_begin = int(3*width_left/4) left_height_begin = 0 template_left = imageLeft[left_height_begin:int(height_Left/2), left_width_begin: width_left] drawLeftRect = imageLeft.copy() cv2.rectangle(drawLeftRect, (left_width_begin, left_height_begin), (width_left, int(height_Left/2) ), (0, 0, 255), 1) cv2.imshow("template_left", drawLeftRect) # cv2.waitKey() # 右邊匹配區域 match_right = imageRight[0:height_Right, 0: int(2*width_Right/3)] # cv2.imshow("match_right", match_right) # cv2.waitKey() # 執行模板匹配,採用的匹配方式cv2.TM_CCOEFF_NORMED matchResult = cv2.matchTemplate(match_right, template_left, cv2.TM_CCOEFF_NORMED) # 歸一化處理 cv2.normalize( matchResult, matchResult, 0, 1, cv2.NORM_MINMAX, -1 ) # 尋找矩陣(一維陣列當做向量,用Mat定義)中的最大值和最小值的匹配結果及其位置 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(matchResult) # 設定最終圖片大小 dstStitch = np.zeros((height_Left, width_Right + left_width_begin - max_loc[0] , 3), imageLeft.dtype) # imageLeft.dtype # print(imageLeft.dtype) height_dst, width_dst = dstStitch.shape[:2] # copy left image dstStitch[0:height_Left, 0:width_left] = imageLeft.copy() # cv2.imshow("src", dstStitch) # 匹配右圖的高要能和目標區域一樣 matchRight_H = height_Right - max_loc[1] + left_height_begin dst_y_start = 0 if height_dst == matchRight_H: matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right] elif height_dst < matchRight_H: matchRight = imageRight[max_loc[1] - left_height_begin: height_Right - 1, max_loc[0]:width_Right] else: matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right] dst_y_start = height_dst - matchRight_H # copy right image # matchRight = imageRight[max_loc[1] - left_height_begin: height_Right, max_loc[0]:width_Right] drawRightRect = imageRight.copy() h, w = template_left.shape[:2] cv2.rectangle(drawRightRect, (max_loc[0],max_loc[1]), (max_loc[0] + w, max_loc[1] + h ), (0, 0, 255), 1) # cv2.imshow("drawRightRect", drawRightRect) # cv2.imshow("matchRight", matchRight) # print("height_Right " + str(height_Right - max_loc[1] + left_height_begin)) # print("matchRight" + str(matchRight.shape)) height_mr, width_mr = matchRight.shape[:2] # print("dstStitch" + str(dstStitch.shape)) dstStitch[dst_y_start:height_dst, left_width_begin:width_mr + left_width_begin] = matchRight.copy() # # 影象融合處理相圖相交的地方 效果不好 # for i in range(0, height_dst): # # if i + winHeight > height: # # i_heiht = True # for j in range(0, width_dst): # if j == left_width_begin: # # j += 1 # (b1, g1, r1) = dstStitch[i, j] # j -= 1 # # dstStitch[i, j] = (b1, g1, r1) # cv2.imwrite("fineFlower04.jpg", dstStitch) cv2.imshow("dstStitch", dstStitch) cv2.waitKey() if __name__ == "__main__": # imageLeft = cv2.imread("Images/Scan/2.jpg") # imageRight = cv2.imread("Images/Scan/3.jpg") imageLeft = cv2.imread("Images/Scan/flower05.jpg") imageRight = cv2.imread("Images/Scan/flower06.jpg") if imageLeft is None or imageRight is None: print("NOTICE: No images") else: # cv2.imshow("image", imageLeft) # cv2.waitKey() matchStitch(imageLeft, imageRight)
計算時需要注意的是模板區域一定要在拼接的左右兩張圖中都有,如果疏忽導致左圖中模板較大,而右較中選的區域沒有完整的模型就接錯了。
# 右邊匹配區域 match_right = imageRight[0:height_Right, 0: int(width_Right/2)]
右邊先一半,一部分模板的不在裡面了,就會拼的效果不好
邊緣的區域還有改進的地方,後面有空再寫。
到此這篇關於Python OpenCV實現基於模板的影象拼接的文章就介紹到這了,更多相關Python OpenCV影象拼接內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45