<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
本篇將會以HandTrackingModule為模組,這裡的模組與之前的有所不同,請按照本篇為準,前面的HandTrackingModule不足以完成本專案,本篇將會通過手勢對本人的部落格海報進行縮放,具體效果可以看下面的效果展示。
首先在一個資料夾下建立HandTrackingModule.py檔案以及gesture_zoom.py,以及一張圖片,你可以按照你的喜好選擇,建議尺寸不要過大。
在這裡用到了食指的索引8,可以完成左右手食指的手勢進行縮放。
HandTrackingModule.py:
import cv2 import mediapipe as mp import math class handDetector: def __init__(self, mode=False, maxHands=2, detectionCon=0.5, minTrackCon=0.5): self.mode = mode self.maxHands = maxHands self.detectionCon = detectionCon self.minTrackCon = minTrackCon self.mpHands = mp.solutions.hands self.hands = self.mpHands.Hands(static_image_mode=self.mode, max_num_hands=self.maxHands, min_detection_confidence=self.detectionCon, min_tracking_confidence=self.minTrackCon) self.mpDraw = mp.solutions.drawing_utils self.tipIds = [4, 8, 12, 16, 20] self.fingers = [] self.lmList = [] def findHands(self, img, draw=True, flipType=True): imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) self.results = self.hands.process(imgRGB) allHands = [] h, w, c = img.shape if self.results.multi_hand_landmarks: for handType, handLms in zip(self.results.multi_handedness, self.results.multi_hand_landmarks): myHand = {} ## lmList mylmList = [] xList = [] yList = [] for id, lm in enumerate(handLms.landmark): px, py, pz = int(lm.x * w), int(lm.y * h), int(lm.z * w) mylmList.append([px, py]) xList.append(px) yList.append(py) ## bbox xmin, xmax = min(xList), max(xList) ymin, ymax = min(yList), max(yList) boxW, boxH = xmax - xmin, ymax - ymin bbox = xmin, ymin, boxW, boxH cx, cy = bbox[0] + (bbox[2] // 2), bbox[1] + (bbox[3] // 2) myHand["lmList"] = mylmList myHand["bbox"] = bbox myHand["center"] = (cx, cy) if flipType: if handType.classification[0].label == "Right": myHand["type"] = "Left" else: myHand["type"] = "Right" else: myHand["type"] = handType.classification[0].label allHands.append(myHand) ## draw if draw: self.mpDraw.draw_landmarks(img, handLms, self.mpHands.HAND_CONNECTIONS) cv2.rectangle(img, (bbox[0] - 20, bbox[1] - 20), (bbox[0] + bbox[2] + 20, bbox[1] + bbox[3] + 20), (255, 0, 255), 2) cv2.putText(img, myHand["type"], (bbox[0] - 30, bbox[1] - 30), cv2.FONT_HERSHEY_PLAIN, 2, (255, 0, 255), 2) if draw: return allHands, img else: return allHands def fingersUp(self, myHand): myHandType = myHand["type"] myLmList = myHand["lmList"] if self.results.multi_hand_landmarks: fingers = [] # Thumb if myHandType == "Right": if myLmList[self.tipIds[0]][0] > myLmList[self.tipIds[0] - 1][0]: fingers.append(1) else: fingers.append(0) else: if myLmList[self.tipIds[0]][0] < myLmList[self.tipIds[0] - 1][0]: fingers.append(1) else: fingers.append(0) # 4 Fingers for id in range(1, 5): if myLmList[self.tipIds[id]][1] < myLmList[self.tipIds[id] - 2][1]: fingers.append(1) else: fingers.append(0) return fingers def findDistance(self, p1, p2, img=None): x1, y1 = p1 x2, y2 = p2 cx, cy = (x1 + x2) // 2, (y1 + y2) // 2 length = math.hypot(x2 - x1, y2 - y1) info = (x1, y1, x2, y2, cx, cy) if img is not None: cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED) cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED) cv2.line(img, (x1, y1), (x2, y2), (255, 0, 255), 3) cv2.circle(img, (cx, cy), 15, (255, 0, 255), cv2.FILLED) return length, info, img else: return length, info def main(): cap = cv2.VideoCapture(0) detector = handDetector(detectionCon=0.8, maxHands=2) while True: # Get image frame success, img = cap.read() # Find the hand and its landmarks hands, img = detector.findHands(img) # with draw # hands = detector.findHands(img, draw=False) # without draw if hands: # Hand 1 hand1 = hands[0] lmList1 = hand1["lmList"] # List of 21 Landmark points bbox1 = hand1["bbox"] # Bounding box info x,y,w,h centerPoint1 = hand1['center'] # center of the hand cx,cy handType1 = hand1["type"] # Handtype Left or Right fingers1 = detector.fingersUp(hand1) if len(hands) == 2: # Hand 2 hand2 = hands[1] lmList2 = hand2["lmList"] # List of 21 Landmark points bbox2 = hand2["bbox"] # Bounding box info x,y,w,h centerPoint2 = hand2['center'] # center of the hand cx,cy handType2 = hand2["type"] # Hand Type "Left" or "Right" fingers2 = detector.fingersUp(hand2) # Find Distance between two Landmarks. Could be same hand or different hands length, info, img = detector.findDistance(lmList1[8][0:2], lmList2[8][0:2], img) # with draw # length, info = detector.findDistance(lmList1[8], lmList2[8]) # with draw # Display cv2.imshow("Image", img) cv2.waitKey(1) if __name__ == "__main__": main()
gesture_zoom.py :
import cv2 import mediapipe as mp import time import HandTrackingModule as htm startDist = None scale = 0 cx, cy = 500,200 wCam, hCam = 1280,720 pTime = 0 cap = cv2.VideoCapture(0) cap.set(3, wCam) cap.set(4, hCam) cap.set(10,150) detector = htm.handDetector(detectionCon=0.75) while 1: success, img = cap.read() handsimformation,img=detector.findHands(img) img1 = cv2.imread("1.png") # img[0:360, 0:260] = img1 if len(handsimformation)==2: # print(detector.fingersUp(handsimformation[0]),detector.fingersUp(handsimformation[1])) #detector.fingersUp(handimformation[0]右手 if detector.fingersUp(handsimformation[0]) == [1, 1, 1, 0, 0] and detector.fingersUp(handsimformation[1]) == [1, 1, 1 ,0, 0]: lmList1 = handsimformation[0]['lmList'] lmList2 = handsimformation[1]['lmList'] if startDist is None: #lmList1[8],lmList2[8]右、左手指尖 # length,info,img=detector.findDistance(lmList1[8],lmList2[8], img) length, info, img = detector.findDistance(handsimformation[0]["center"], handsimformation[1]["center"], img) startDist=length length, info, img = detector.findDistance(handsimformation[0]["center"], handsimformation[1]["center"], img) # length, info, img = detector.findDistance(lmList1[8], lmList2[8], img) scale=int((length-startDist)//2) cx, cy=info[4:] print(scale) else: startDist=None try: h1, w1, _ = img1.shape newH, newW = ((h1 + scale) // 2) * 2, ((w1 + scale) // 2) * 2 img1 = cv2.resize(img1, (newW, newH)) img[cy-newH//2:cy+ newH//2, cx-newW//2:cx+newW//2] = img1 except: pass #################列印影格率##################### cTime = time.time() fps = 1 / (cTime - pTime) pTime = cTime cv2.putText(img, f'FPS: {int(fps)}', (40, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (100, 0, 255), 3) cv2.imshow("image",img) k=cv2.waitKey(1) if k==27: break
前面的類模組,我不做過多的講解,它的新新增功能,我會在講解主檔案的時候提到。
1.首先,匯入我們需要的模組,第一步先編寫開啟攝像頭的程式碼,確保攝像頭的正常,並調節好視窗的設定——長、寬、亮度,並且用htm(HandTrackingModule的縮寫,後面都是此意)handDetector調整置信度,讓我們檢測到手更準確。
2.其次,用findHands的得到手的landmark,我所設定的手勢是左右手的大拇指、食指、中指高於其他四指,也就是這六根手指豎起,我們按照[1, 1, 1, 0, 0],[1, 1, 1, 0, 0]來設定,如果你不能確定,請解除這裡的程式碼;
#print(detector.fingersUp(handsimformation[0]),detector.fingersUp(handsimformation[1]))
3.然後,在這裡有兩個handsimformation[0]['lmList'],handsimformation[0]["center"],分別代表我要取食指,和手掌中心點,那麼展示的時候是用的中心點,可以按照個人的喜好去選擇手掌的索引,startDist=None表示為沒有檢測到的手時的起始長度,而經過每次迭代後,獲得的距離length-起始長度,如果我增大手的距離,我就能得到一個較大的scale,由於列印的scale太大,我不希望它變化太快,所以做了二分後取整,如果得到的是一個負值,那麼就縮小圖片,那麼我們沒有檢測到手時,就要令startDist=None。
4.之後來看,info = (x1, y1, x2, y2, cx, cy),根據索引得到中心值,然後,我們來獲取現在海報的大小,然後加上我們scale,實現動態的縮放,但在這裡要注意,這裡進行了整出2,在乘以2的操作,如果是引數是偶數,我們無需理會,但如果遇到了奇數就會出現少一個畫素點的問題,比如,值為9,整除2後得到的為4,4+4=8<9,所以為了確保正確,加了這一步。加入try...except語句是因為影象超出視窗時發出會發出警告,起到超出時此程式碼將不起作用,回到視窗時,可以繼續操作。
5.最後,列印出我們的影格率
到此這篇關於OpenCV實戰之實現手勢虛擬縮放效果的文章就介紹到這了,更多相關OpenCV手勢虛擬縮放內容請搜尋it145.com以前的文章或繼續瀏覽下面的相關文章希望大家以後多多支援it145.com!
相關文章
<em>Mac</em>Book项目 2009年学校开始实施<em>Mac</em>Book项目,所有师生配备一本<em>Mac</em>Book,并同步更新了校园无线网络。学校每周进行电脑技术更新,每月发送技术支持资料,极大改变了教学及学习方式。因此2011
2021-06-01 09:32:01
综合看Anker超能充系列的性价比很高,并且与不仅和iPhone12/苹果<em>Mac</em>Book很配,而且适合多设备充电需求的日常使用或差旅场景,不管是安卓还是Switch同样也能用得上它,希望这次分享能给准备购入充电器的小伙伴们有所
2021-06-01 09:31:42
除了L4WUDU与吴亦凡已经多次共事,成为了明面上的厂牌成员,吴亦凡还曾带领20XXCLUB全队参加2020年的一场音乐节,这也是20XXCLUB首次全员合照,王嗣尧Turbo、陈彦希Regi、<em>Mac</em> Ova Seas、林渝植等人全部出场。然而让
2021-06-01 09:31:34
目前应用IPFS的机构:1 谷歌<em>浏览器</em>支持IPFS分布式协议 2 万维网 (历史档案博物馆)数据库 3 火狐<em>浏览器</em>支持 IPFS分布式协议 4 EOS 等数字货币数据存储 5 美国国会图书馆,历史资料永久保存在 IPFS 6 加
2021-06-01 09:31:24
开拓者的车机是兼容苹果和<em>安卓</em>,虽然我不怎么用,但确实兼顾了我家人的很多需求:副驾的门板还配有解锁开关,有的时候老婆开车,下车的时候偶尔会忘记解锁,我在副驾驶可以自己开门:第二排设计很好,不仅配置了一个很大的
2021-06-01 09:30:48
不仅是<em>安卓</em>手机,苹果手机的降价力度也是前所未有了,iPhone12也“跳水价”了,发布价是6799元,如今已经跌至5308元,降价幅度超过1400元,最新定价确认了。iPhone12是苹果首款5G手机,同时也是全球首款5nm芯片的智能机,它
2021-06-01 09:30:45