首頁 > 軟體

ARM Linux 系統呼叫過程

2020-06-16 18:01:45

  系統呼叫是作業系統提供給使用者(應用程式)的一組介面,每個系統呼叫都有一個對應的系統呼叫函數來完成相應的工作。使用者通過這個介面向作業系統申請服務,如存取硬體,管理進程等等。但是因為使用者程式執行在使用者空間,而系統呼叫執行在核心空間,因此使用者程式不能直接呼叫系統呼叫函數,我們經常看到的比如fork、open、write 等等函數實際上並不是真正的系統呼叫函數,他們都只是c庫,在這些函數里將執行一個軟中斷 swi 指令,產生一個軟中斷,使CPU 陷入核心態,接著在核心中進行一系列的判斷,判斷出是哪個系統呼叫,再轉到真正的系統呼叫函數,完成相應的功能。下面舉一個簡單的例子說明從使用者態呼叫一個“系統呼叫”,到核心處理的整個執行流程。

  使用者態程式如下:

      void pk()

  {

    __asm__(

    "ldr  r7  =365 n"

    "swi n"

    :

    :

    :

    );

  }

  int main()

  {

      pk();

    retrun 0;

  }

  上面的程式碼中,我自己實現了一個新的系統呼叫,具體怎麼做,後面再具體描述。pk()事實上就可以類比於平時我們在使用者程式裡呼叫的 open() 等函數,這個函數只做了一件簡單的事:將系統呼叫號傳給 r7 ,,然後產生一軟中斷。接著CPU陷入核心

  核心態:

  CPU相應這個軟中斷以後,PC指標會到相應的中斷向量表中取指,中斷向量表在核心程式碼中:arch/arm/kernel/entry-armv.S  中定義

.LCvswi:
 .word vector_swi

 .globl __stubs_end
__stubs_end:

 .equ stubs_offset, __vectors_start + 0x200 - __stubs_start

 .globl __vectors_start
__vectors_start:
 ARM( swi SYS_ERROR0 )
 THUMB( svc #0  )
 THUMB( nop   )
 W(b) vector_und + stubs_offset
 W(ldr) pc, .LCvswi + stubs_offset  #響應中斷後pc指向這裡
 W(b) vector_pabt + stubs_offset
 W(b) vector_dabt + stubs_offset
 W(b) vector_addrexcptn + stubs_offset
 W(b) vector_irq + stubs_offset
 W(b) vector_fiq + stubs_offset

 .globl __vectors_end
__vectors_end:

當pc取到如上的指令後,會跳到 vector_swi 這個標號,這個標號在arch/arm/kernel/entry-commen.S 中定義。

 .align 5
ENTRY(vector_swi)
 sub sp, sp, #S_FRAME_SIZE
 stmia sp, {r0 - r12}   @ Calling r0 - r12
 ARM( add r8, sp, #S_PC  )
 ARM( stmdb r8, {sp, lr}^  ) @ Calling sp, lr
 THUMB( mov r8, sp   )
 THUMB( store_user_sp_lr r8, r10, S_SP ) @ calling sp, lr
 mrs r8, spsr   @ called from non-FIQ mode, so ok.
 str lr, [sp, #S_PC]   @ Save calling PC
 str r8, [sp, #S_PSR]  @ Save CPSR
 str r0, [sp, #S_OLD_R0]  @ Save OLD_R0
 zero_fp

 /*
  * Get the system call number.    #取出系統呼叫號
  */

#if defined(CONFIG_OABI_COMPAT)

 /*
  * If we have CONFIG_OABI_COMPAT then we need to look at the swi
  * value to determine if it is an EABI or an old ABI call.
  */
#ifdef CONFIG_ARM_THUMB
 tst r8, #PSR_T_BIT
 movne r10, #0    @ no thumb OABI emulation
 ldreq r10, [lr, #-4]   @ get SWI instruction
#else
 ldr r10, [lr, #-4]   @ get SWI instruction
  A710( and ip, r10, #0x0f000000  @ check for SWI  )
  A710( teq ip, #0x0f000000      )
  A710( bne .Larm710bug      )
#endif
#ifdef CONFIG_CPU_ENDIAN_BE8
 rev r10, r10   @ little endian instruction
#endif

#elif defined(CONFIG_AEABI)


 /*
  * Pure EABI user space always put syscall number into scno (r7).
  */
  A710( ldr ip, [lr, #-4]   @ get SWI instruction )
  A710( and ip, ip, #0x0f000000  @ check for SWI  )
  A710( teq ip, #0x0f000000      )
  A710( bne .Larm710bug      )

#elif defined(CONFIG_ARM_THUMB)

 /* Legacy ABI only, possibly thumb mode. */
 tst r8, #PSR_T_BIT   @ this is SPSR from save_user_regs
 addne scno, r7, #__NR_SYSCALL_BASE @ put OS number in
 ldreq scno, [lr, #-4]

#else

 /* Legacy ABI only. */
 ldr scno, [lr, #-4]   @ get SWI instruction
  A710( and ip, scno, #0x0f000000  @ check for SWI  )
  A710( teq ip, #0x0f000000      )
  A710( bne .Larm710bug      )

#endif

#ifdef CONFIG_ALIGNMENT_TRAP
 ldr ip, __cr_alignment
 ldr ip, [ip]
 mcr p15, 0, ip, c1, c0  @ update control register
#endif
 enable_irq

 get_thread_info tsk

 adr tbl, sys_call_table  @ load syscall table pointer  #獲取系統呼叫表的基地址
 ldr ip, [tsk, #TI_FLAGS]  @ check for syscall tracing

#if defined(CONFIG_OABI_COMPAT)
 /*
  * If the swi argument is zero, this is an EABI call and we do nothing.
  *
  * If this is an old ABI call, get the syscall number into scno and
  * get the old ABI syscall table address.
  */
 bics r10, r10, #0xff000000
 eorne scno, r10, #__NR_OABI_SYSCALL_BASE
 ldrne tbl, =sys_oabi_call_table
#elif !defined(CONFIG_AEABI)
 bic scno, scno, #0xff000000  @ mask off SWI op-code
 eor scno, scno, #__NR_SYSCALL_BASE @ check OS number
#endif

 stmdb sp!, {r4, r5}   @ push fifth and sixth args
 tst ip, #_TIF_SYSCALL_TRACE  @ are we tracing syscalls?
 bne __sys_trace

 cmp scno, #NR_syscalls  @ check upper syscall limit
 adr lr, BSYM(ret_fast_syscall) @ return address
 ldrcc pc, [tbl, scno, lsl #2]  @ call sys_* routine  #跳到系統呼叫函數

 add r1, sp, #S_OFF
2: mov why, #0    @ no longer a real syscall
 cmp scno, #(__ARM_NR_BASE - __NR_SYSCALL_BASE)
 eor r0, scno, #__NR_SYSCALL_BASE @ put OS number back
 bcs arm_syscall 
 b sys_ni_syscall   @ not private func

從上面可以看出,當CPU從中斷向量表轉到vector_swi 之後,完成了幾件事情:1.取出系統呼叫號 2.根據系統呼叫號取出系統呼叫函數在系統呼叫表的基地址,得到一個系統呼叫函數的函數指標 3. 根據系統呼叫表的基地址和系統呼叫號,得到這個系統呼叫表裡的項,每一個表項都是一個函數指標,把這個函數指標賦給PC , 則實現了跳轉到系統呼叫函數。

系統呼叫表定義在:arch/arm/kernel/Calls.S

* This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  This file is included thrice in entry-common.S
 */
/* 0 */  CALL(sys_restart_syscall)
  CALL(sys_exit)
  CALL(sys_fork_wrapper)
  CALL(sys_read)
  CALL(sys_write)
/* 5 */  CALL(sys_open)
  CALL(sys_close)
  CALL(sys_ni_syscall)  /* was sys_waitpid */
  CALL(sys_creat)
  CALL(sys_link)
/* 10 */ CALL(sys_unlink)
  CALL(sys_execve_wrapper)
  CALL(sys_chdir)
  CALL(OBSOLETE(sys_time)) /* used by libc4 */
  CALL(sys_mknod)
/* 15 */ CALL(sys_chmod)
  CALL(sys_lchown16)
  CALL(sys_ni_syscall)  /* was sys_break */
  CALL(sys_ni_syscall)  /* was sys_stat */
  CALL(sys_lseek)
/* 20 */ CALL(sys_getpid)
  CALL(sys_mount)
  CALL(OBSOLETE(sys_oldumount)) /* used by libc4 */
  CALL(sys_setuid16)
  CALL(sys_getuid16)
/* 25 */ CALL(OBSOLETE(sys_stime))
  CALL(sys_ptrace)
  CALL(OBSOLETE(sys_alarm)) /* used by libc4 */
  CALL(sys_ni_syscall)  /* was sys_fstat */
  CALL(sys_pause)
/* 30 */ CALL(OBSOLETE(sys_utime)) /* used by libc4 */
  CALL(sys_ni_syscall)  /* was sys_stty */
  CALL(sys_ni_syscall)  /* was sys_getty */
  CALL(sys_access)
  CALL(sys_nice)
/* 35 */ CALL(sys_ni_syscall)  /* was sys_ftime */
  CALL(sys_sync)
  CALL(sys_kill)
  CALL(sys_rename)
  CALL(sys_mkdir)
/* 40 */ CALL(sys_rmdir)
  CALL(sys_dup)
  CALL(sys_pipe)
  CALL(sys_times)
  CALL(sys_ni_syscall)  /* was sys_prof */
/* 45 */ CALL(sys_brk)
  CALL(sys_setgid16)
  CALL(sys_getgid16)
  CALL(sys_ni_syscall)  /* was sys_signal */
  CALL(sys_geteuid16)
/* 50 */ CALL(sys_getegid16)
  CALL(sys_acct)
  CALL(sys_umount)
  CALL(sys_ni_syscall)  /* was sys_lock */
  CALL(sys_ioctl)
/* 55 */ CALL(sys_fcntl)
  .......

  CALL(sys_eventfd2)
  CALL(sys_epoll_create1)
  CALL(sys_dup3)
  CALL(sys_pipe2)
/* 360 */ CALL(sys_inotify_init1)
  CALL(sys_preadv)
  CALL(sys_pwritev)
  CALL(sys_rt_tgsigqueueinfo)
  CALL(sys_perf_event_open)
  CALL(sys_pk)    #我自己加的系統呼叫

 了解了一個系統呼叫的執行過程就可以試著新增一個自己的系統呼叫了:

核心:

1. 在核心程式碼實現一個系統呼叫函數,即 sys_xxx()函數,如我在 kernel/printk.c 中新增了

void pk()

{

  printk(KERN_WARNING"this is my first sys call !n");

}

 

2. 新增系統呼叫號 在 arch/arm/include/asm/Unistd.h

新增  #define __NR_pk    (__NR_SYSCALL_BASE+365)

 

3. 新增呼叫函數指標列表 在arch/arm/keenel/Calls.S

新增 CALL(sys_pk)

 

4.  宣告自己的系統呼叫函數 在include/linux/syscall.h

新增asmlinkage long sys_pk()

 

使用者空間:

 

      void pk()

  {

    __asm__(

    "ldr  r7  =365 n"

    "swi n"

    :

    :

    :

    );

  }

  int main()

  {

      pk();

     retrun 0;

  }

完成上面的編寫以後就可以編譯核心和應用程式了。

將生成的檔案在arm開發板上執行可以列印出: This is my first sys call!

說明我新增的系統呼叫可以使用。

至此,描述系統呼叫的實現機制和新增一個新的系統呼叫就完成了。

本文永久更新連結地址http://www.linuxidc.com/Linux/2015-04/116546.htm


IT145.com E-mail:sddin#qq.com