2021-05-12 14:32:11
Python3 pandas.concat的用法說明
前面給大家分享了pandas.merge用法詳解,這節分享pandas資料合併處理的姊妹篇,pandas.concat用法詳解,參考利用Python進行資料分析與pandas官網進行整理。
pandas.merge參數列如下圖,其中只有objs是必須得引數,另外常用引數包括objs、axis、join、keys、ignore_index。
1.pd.concat([df1,df2,df3])
, 預設axis=0,在0軸上合併。
2.pd.concat([df1,df4],axis=1)
–在1軸上合併
3.pd.concat([df1,df2,df3],keys=[‘x', ‘y', ‘z'])
–合併時便於區分建立層次化索引。
4.pd.concat([df1, df4], axis=1, join=‘inner')
–採用內連線合併,join預設為outer外連線。
5.pd.concat([df1, df4], ignore_index=True)
–當原來DataFrame的索引沒有意義的時候,concat之後可以不需要原來的索引。
補充:python3:pandas(合併concat和merge)
pandas處理多組資料的時候往往會要用到資料的合併處理,其中有三種方式,concat、append和merge。
1、concat
用concat是一種基本的合併方式。而且concat中有很多引數可以調整,合併成你想要的資料形式。axis來指明合併方向。axis=0是預設值,因此未設定任何引數時,函數預設axis=0。(0表示上下合併,1表示左右合併)
import pandas as pd import numpy as np #定義資料集 df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d']) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d']) df3 = pd.DataFrame(np.ones((3,4))*2, columns=['a','b','c','d']) #concat縱向合併 res = pd.concat([df1, df2, df3], axis=0) #列印結果 print(res) ''' a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 0 1.0 1.0 1.0 1.0 1 1.0 1.0 1.0 1.0 2 1.0 1.0 1.0 1.0 0 2.0 2.0 2.0 2.0 1 2.0 2.0 2.0 2.0 2 2.0 2.0 2.0 2.0 '''
上述index為0,1,2,0,1,2形式。為什麼會出現這樣的情況,其實是仍然按照合併前的index組合起來的。若希望遞增,請看下面範例:
ignore_index (重置 index)
重置後的index為0,1,……8
res = pd.concat([df1, df2, df3], axis=0, ignore_index=True)# 將ignore_index設定為True print(res) #列印結果 ''' a b c d 0 0.0 0.0 0.0 0.0 1 0.0 0.0 0.0 0.0 2 0.0 0.0 0.0 0.0 3 1.0 1.0 1.0 1.0 4 1.0 1.0 1.0 1.0 5 1.0 1.0 1.0 1.0 6 2.0 2.0 2.0 2.0 7 2.0 2.0 2.0 2.0 8 2.0 2.0 2.0 2.0 '''
join (合併方式)
join='outer'為預設值,因此未設定任何引數時,函數預設join='outer'。此方式是依照column來做縱向合併,有相同的column上下合併在一起,其他獨自的column個自成列,原本沒有值的位置皆以NaN填充。
import pandas as pd import numpy as np #定義資料集 df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3]) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4]) res = pd.concat([df1, df2], axis=0, join='outer') #縱向"外"合併df1與df2 print(res) ''' a b c d e 1 0.0 0.0 0.0 0.0 NaN 2 0.0 0.0 0.0 0.0 NaN 3 0.0 0.0 0.0 0.0 NaN 2 NaN 1.0 1.0 1.0 1.0 3 NaN 1.0 1.0 1.0 1.0 4 NaN 1.0 1.0 1.0 1.0 ''' res = pd.concat([df1, df2], axis=0, join='inner') #縱向"內"合併df1與df2 #列印結果 print(res) ''' b c d 1 0.0 0.0 0.0 2 0.0 0.0 0.0 3 0.0 0.0 0.0 2 1.0 1.0 1.0 3 1.0 1.0 1.0 4 1.0 1.0 1.0 '''
join_axes (依照 axes 合併)
import pandas as pd import numpy as np #定義資料集 df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d'], index=[1,2,3]) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['b','c','d','e'], index=[2,3,4]) #依照`df1.index`進行橫向合併 res = pd.concat([df1, df2], axis=1, join_axes=[df1.index]) #列印結果 print(res) # a b c d b c d e # 1 0.0 0.0 0.0 0.0 NaN NaN NaN NaN # 2 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 # 3 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0
上述指令碼中,join_axes=[df1.index]表明按照df1的index來合併,可以看到結果中去掉了df2中出現但df1中沒有的index=4這一行。
2、append (新增資料)
append只有縱向合併,沒有橫向合併。
import pandas as pd import numpy as np #定義資料集 df1 = pd.DataFrame(np.ones((3,4))*0, columns=['a','b','c','d']) df2 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d']) df3 = pd.DataFrame(np.ones((3,4))*1, columns=['a','b','c','d']) s1 = pd.Series([1,2,3,4], index=['a','b','c','d']) #將df2合併到df1的下面,以及重置index,並列印出結果 res = df1.append(df2, ignore_index=True) print(res) # a b c d # 0 0.0 0.0 0.0 0.0 # 1 0.0 0.0 0.0 0.0 # 2 0.0 0.0 0.0 0.0 # 3 1.0 1.0 1.0 1.0 # 4 1.0 1.0 1.0 1.0 # 5 1.0 1.0 1.0 1.0 #合併多個df,將df2與df3合併至df1的下面,以及重置index,並列印出結果 res = df1.append([df2, df3], ignore_index=True) print(res) # a b c d # 0 0.0 0.0 0.0 0.0 # 1 0.0 0.0 0.0 0.0 # 2 0.0 0.0 0.0 0.0 # 3 1.0 1.0 1.0 1.0 # 4 1.0 1.0 1.0 1.0 # 5 1.0 1.0 1.0 1.0 # 6 1.0 1.0 1.0 1.0 # 7 1.0 1.0 1.0 1.0 # 8 1.0 1.0 1.0 1.0 #合併series,將s1合併至df1,以及重置index,並列印出結果 res = df1.append(s1, ignore_index=True) print(res) # a b c d # 0 0.0 0.0 0.0 0.0 # 1 0.0 0.0 0.0 0.0 # 2 0.0 0.0 0.0 0.0 # 3 1.0 2.0 3.0 4.0
3、merge
根據兩組資料中的關鍵字key來合併(key在兩組資料中是完全一致的)。
3.1依據一組key合併
import pandas as pd #定義資料集並列印出 left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) print(left) # A B key # 0 A0 B0 K0 # 1 A1 B1 K1 # 2 A2 B2 K2 # 3 A3 B3 K3 print(right) # C D key # 0 C0 D0 K0 # 1 C1 D1 K1 # 2 C2 D2 K2 # 3 C3 D3 K3 #依據key column合併,並列印出 res = pd.merge(left, right, on='key') print(res) A B key C D # 0 A0 B0 K0 C0 D0 # 1 A1 B1 K1 C1 D1 # 2 A2 B2 K2 C2 D2 # 3 A3 B3 K3 C3 D3
3.2 根據兩組key合併
合併時有4種方法how = ['left', 'right', 'outer', 'inner'],預設值how='inner'。
inner:按照關鍵字組合之後,去掉組合中有合併項為NaN的行。
outer :保留所有組合
left:僅保留左邊合併項為NaN的行
right:僅保留右邊合併項為NaN的行
import pandas as pd import numpy as np #定義資料集並列印出 left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'], 'key2': ['K0', 'K1', 'K0', 'K1'], 'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3']}) right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'], 'key2': ['K0', 'K0', 'K0', 'K0'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) print(left) ''' key1 key2 A B 0 K0 K0 A0 B0 1 K0 K1 A1 B1 2 K1 K0 A2 B2 3 K2 K1 A3 B3 ''' print(right) ''' key1 key2 C D 0 K0 K0 C0 D0 1 K1 K0 C1 D1 2 K1 K0 C2 D2 3 K2 K0 C3 D3 ''' #依據key1與key2 columns進行合併,並列印出四種結果['left', 'right', 'outer', 'inner'] res = pd.merge(left, right, on=['key1', 'key2'], how='inner') print(res) ''' key1 key2 A B C D 0 K0 K0 A0 B0 C0 D0 1 K1 K0 A2 B2 C1 D1 2 K1 K0 A2 B2 C2 D2 ''' res = pd.merge(left, right, on=['key1', 'key2'], how='outer') print(res) ''' key1 key2 A B C D 0 K0 K0 A0 B0 C0 D0 1 K0 K1 A1 B1 NaN NaN 2 K1 K0 A2 B2 C1 D1 3 K1 K0 A2 B2 C2 D2 4 K2 K1 A3 B3 NaN NaN 5 K2 K0 NaN NaN C3 D3 ''' res = pd.merge(left, right, on=['key1', 'key2'], how='left') print(res) ''' key1 key2 A B C D 0 K0 K0 A0 B0 C0 D0 1 K0 K1 A1 B1 NaN NaN 2 K1 K0 A2 B2 C1 D1 3 K1 K0 A2 B2 C2 D2 4 K2 K1 A3 B3 NaN NaN ''' res = pd.merge(left, right, on=['key1', 'key2'], how='right') print(res) ''' key1 key2 A B C D 0 K0 K0 A0 B0 C0 D0 1 K1 K0 A2 B2 C1 D1 2 K1 K0 A2 B2 C2 D2 3 K2 K0 NaN NaN C3 D3 '''
3.3 Indicator
indicator=True會將合併的記錄放在新的一列。
import pandas as pd #定義資料集並列印出 df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']}) df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]}) print(df1) # col1 col_left # 0 0 a # 1 1 b print(df2) # col1 col_right # 0 1 2 # 1 2 2 # 2 2 2 # 依據col1進行合併,並啟用indicator=True,最後列印出 res = pd.merge(df1, df2, on='col1', how='outer', indicator=True) print(res) # col1 col_left col_right _merge # 0 0.0 a NaN left_only # 1 1.0 b 2.0 both # 2 2.0 NaN 2.0 right_only # 3 2.0 NaN 2.0 right_only # 自定indicator column的名稱,並列印出 res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column') print(res) # col1 col_left col_right indicator_column # 0 0.0 a NaN left_only # 1 1.0 b 2.0 both # 2 2.0 NaN 2.0 right_only # 3 2.0 NaN 2.0 right_only
3.4 依據index合併
import pandas as pd #定義資料集並列印出 left = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']}, index=['K0', 'K1', 'K2']) right = pd.DataFrame({'C': ['C0', 'C2', 'C3'], 'D': ['D0', 'D2', 'D3']}, index=['K0', 'K2', 'K3']) print(left) # A B # K0 A0 B0 # K1 A1 B1 # K2 A2 B2 print(right) # C D # K0 C0 D0 # K2 C2 D2 # K3 C3 D3 #依據左右資料集的index進行合併,how='outer',並列印出 res = pd.merge(left, right, left_index=True, right_index=True, how='outer') print(res) # A B C D # K0 A0 B0 C0 D0 # K1 A1 B1 NaN NaN # K2 A2 B2 C2 D2 # K3 NaN NaN C3 D3 #依據左右資料集的index進行合併,how='inner',並列印出 res = pd.merge(left, right, left_index=True, right_index=True, how='inner') print(res) # A B C D # K0 A0 B0 C0 D0 # K2 A2 B2 C2 D2
3.5 解決overlapping的問題
下面指令碼中,boys和girls均有屬性age,但是兩者值不同,因此需要在合併時加上字尾suffixes,以示區分。
import pandas as pd #定義資料集 boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]}) girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]}) #使用suffixes解決overlapping的問題 res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner') print(res) # age_boy k age_girl # 0 1 K0 4 # 1 1 K0 5
以上是pandas中有關於合併的一些操作。當然,如果練習的多了,幾個方法也是大同小異。希望大家多多支援it145.com。如有錯誤或未考慮完全的地方,望不吝賜教。
相關文章